我有一个函数来计算numpy数组中所有行对之间的成对相关性.一切正常,但是后来我想起,我经常不得不处理丢失的数据.我使用蒙版数组尝试解决此问题,但它使计算速度大大降低.关于使用屏蔽函数的任何想法.我认为真正的瓶颈将在np.ma.dot函数中.但是我添加了一些配置文件,并很快使用iPython进行了模拟.我应该说,就这些阵列将要拥有的行数而言,5000在频谱的较低端.有些可能超过30万.带掩码数组的代码看起来比没有掩码的代码慢大约20倍,但是显然由于缺少数据,没有掩码数组的代码经常会产生NaN.
首先,一种快速而肮脏的方式来生成一些样本数据
genotypes = np.empty((5000,200))
for i in xrange(5000):
genotypes[i] = np.random.binomial(3,.333, size=200)
pValues = np.random.uniform(0,1,5000)
然后测试功能
def testMask(pValsArray, genotypeArray):
nSNPs = len(pValsArray)-1
genotypeArray = np.ma.masked_array(genotypeArray, np.isnan(genotypeArray))
chisq = np.sum(-2 * np.log(pValsArray))
ms = genotypeArray.mean(axis=1)[(slice(None,None,None),None)]
datam = genotypeArray - ms
datass = np.ma.sqrt(np.ma.sum(datam**2, axis=1))
runningSum = 0
for i in xrange(nSNPs):
temp = np.ma.dot(datam[i:],datam[i].T)
d = (datass[i:]*datass[i])
rs = temp / d
rs = np.absolute(rs)[1:]
runningSum += 3.25 * np.sum(rs) + .75 * np.dot(rs, rs)
sigmaSq = 4*nSNPs+2*runningSum
E = 2*nSNPs
df = (2*(E*E))/sigmaSq
runningSum = sigmaSq/(2*E)
d = chisq/runningSum
brownsP = stats.chi2.sf(d, df)
return brownsP
def testNotMask(pValsArray, genotypeArray):
nSNPs = len(pValsArray)-1
chisq = np.sum(-2 * np.log(pValsArray))
ms = genotypeArray.mean(axis=1)[(slice(None,None,None),None)]
datam = genotypeArray - ms
datass = np.sqrt(stats.ss(datam, axis=1))
runningSum = 0
for i in xrange(nSNPs):
temp = np.dot(datam[i:],datam[i].T)
d = (datass[i:]*datass[i])
rs = temp / d
rs = np.absolute(rs)[1:]
runningSum += 3.25 * np.sum(rs) + .75 * np.dot(rs, rs)
sigmaSq = 4*nSNPs+2*runningSum
E = 2*nSNPs
df = (2*(E*E))/sigmaSq
runningSum = sigmaSq/(2*E)
d = chisq/runningSum
brownsP = stats.chi2.sf(d, df)
return brownsP
还有一些时间
%timeit testMask(pValues, genotypes)
1 loops, best of 3: 14.3 s per loop
%timeit testNotMask(pValues, genotypes)
1 loops, best of 3: 678 ms per loop
添加一些丢失的数据,然后再次运行:
randis = np.random.randint(0,5000, 10)
randjs = np.random.randint(0,200, 10)
for i,j in zip(randis, randjs):
genotypes[i,j] = None
%timeit testMask(pValues, genotypes)
1 loops, best of 3: 14.2 s per loop
%timeit testNotMask(pValues, genotypes)
1 loops, best of 3: 654 ms per loop
和一些分析:
%prun
2559677 function calls in 15.045 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
9791 5.259 0.001 5.259 0.001 {method 'copy' of 'numpy.ndarray' objects}
4999 2.877 0.001 11.888 0.002 extras.py:949(dot)
9794 1.566 0.000 1.566 0.000 {numpy.core.multiarray.copyto}
14997 1.497 0.000 1.564 0.000 {numpy.core._dotblas.dot}
30007 0.559 0.000 0.559 0.000 {method 'reduce' of 'numpy.ufunc' objects}
94996 0.450 0.000 0.875 0.000 core.py:2751(_update_from)
864970 0.347 0.000 0.347 0.000 {getattr}
5000 0.346 0.000 0.802 0.000 core.py:1065(__call__)
1 0.240 0.240 15.045 15.045 <ipython-input-115-2aab1c8ea4c5>:1(testMask)
5000 0.196 0.000 0.196 0.000 core.py:771(__call__)
5001 0.147 0.000 0.551 0.000 core.py:917(__call__)
24996 0.143 0.000 0.609 0.000 core.py:2930(__getitem__)
54998 0.140 0.000 0.775 0.000 core.py:2776(__array_finalize__)
419985 0.126 0.000 0.126 0.000 {method 'update' of 'dict' objects}
1 0.093 0.093 0.111 0.111 core.py:5990(power)
339994 0.077 0.000 0.077 0.000 {isinstance}
50015 0.072 0.000 0.072 0.000 {numpy.core.multiarray.array}
60002 0.060 0.000 0.568 0.000 {method 'view' of 'numpy.ndarray' objects}
5000 0.060 0.000 0.199 0.000 core.py:2626(__new__)
14999 0.058 0.000 7.412 0.000 core.py:3341(filled)
25005 0.055 0.000 0.092 0.000 core.py:609(getdata)
编辑:
我尝试了perimosocordiae的答案,但我仍然感到烦恼.看起来像平均值,stats.ss和np.sqrt函数都关心nan值.
def fastNotMask(pValsArray, genotypeArray):
nSNPs = len(pValsArray)-1
chisq = np.sum(-2 * np.log(pValsArray))
ms = genotypeArray.mean(axis=1)[(slice(None,None,None),None)]
print ms
datam = genotypeArray - ms
print datam
datass = np.sqrt(stats.ss(datam, axis=1))
print datass
runningSum = 0
for i in xrange(nSNPs):
temp = np.dot(datam[i:],datam[i].T)
d = (datass[i:]*datass[i])
rs = temp / d
rs = np.absolute(rs)[1:]
runningSum += 3.25 * np.nansum(rs) + .75 * np.nansum(rs * rs)
print runningSum
sigmaSq = 4*nSNPs+2*runningSum
E = 2*nSNPs
df = (2*(E*E))/sigmaSq
runningSum = sigmaSq/(2*E)
d = chisq/runningSum
brownsP = stats.chi2.sf(d, df)
return brownsP
用少量输出进行测试表明,nans没有被正确处理.
pValues = np.random.uniform(0,1,10)
genotypes = np.empty((10,10))
for i in xrange(10):
genotypes[i] = np.random.binomial(2,.5, size=10)
randis = np.random.randint(0,10, 2)
randjs = np.random.randint(0,10, 2)
for i,j in zip(randis, randjs):
genotypes[i,j] = None
print testfastMask(pValues, genotypes)
[[ 1.5]
[ 1.2]
[ 0.9]
[ 1.2]
[ 1.1]
[ 0.6]
[ nan]
[ 1.1]
[ nan]
[ 0.8]]
[[-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5]
[-0.2 0.8 -0.2 -0.2 -0.2 -0.2 -0.2 0.8 -0.2 -0.2]
[-0.9 0.1 -0.9 1.1 0.1 -0.9 1.1 0.1 0.1 0.1]
[-0.2 -0.2 -0.2 -0.2 0.8 -0.2 -0.2 -1.2 0.8 0.8]
[-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 0.9 -1.1]
[-0.6 1.4 0.4 -0.6 -0.6 0.4 -0.6 -0.6 0.4 0.4]
[ nan nan nan nan nan nan nan nan nan nan]
[-0.1 0.9 -1.1 -1.1 0.9 -0.1 0.9 -1.1 0.9 -0.1]
[ nan nan nan nan nan nan nan nan nan nan]
[ 1.2 -0.8 -0.8 0.2 -0.8 0.2 1.2 0.2 0.2 -0.8]]
[ 1.58113883 1.26491106 2.21359436 1.8973666 1.70293864 2.0976177
nan 2.62678511 nan 2.36643191]
nan
nan
我在这里想念什么吗?这可能是版本问题.我正在使用python 2.7和numpy 1.7.1?
为帮助加油.
解决方法:
编辑:原始答案不适用于numpy版本< = 1.8,其中np.nansum([NaN,NaN])== 0.0(note the FutureWarning).对于早期版本,您必须手动检查这种情况:
tmp = 3.25 * np.nansum(rs) + .75 * np.nansum(rs * rs)
if not np.isnan(tmp):
runningSum += tmp
或者,您可以建立一个tmp值列表/数组,并在其上调用np.nansum.
原始答案:
您需要更改的只是testNotMask中的这一行:
runningSum += 3.25 * np.sum(rs) + .75 * np.dot(rs, rs)
对此:
runningSum += 3.25 * np.nansum(rs) + .75 * np.nansum(rs * rs)
所有其他操作都可以使用NaN值正常工作,因此您可以在保持正确结果的同时获得所有非掩码数组的速度.
这是证明.函数fastNotMask只是带有上述更改的testNotMask.
In [63]: genotypes = np.random.binomial(3, .333, size=(5000, 200)).astype(float)
In [64]: pValues = np.random.uniform(0,1,5000)
In [65]: %timeit testMask(pValues, genotypes)
1 loops, best of 3: 11.3 s per loop
In [66]: %timeit testNotMask(pValues, genotypes)
1 loops, best of 3: 3.53 s per loop
In [67]: %timeit fastNotMask(pValues, genotypes)
1 loops, best of 3: 3.96 s per loop
In [68]: randjs = np.random.randint(0,200, 10)
In [69]: randis = np.random.randint(0,5000,10)
In [70]: genotypes[randis,randjs] = None
In [71]: %timeit testMask(pValues, genotypes)
1 loops, best of 3: 33 s per loop
In [72]: %timeit testNotMask(pValues, genotypes)
1 loops, best of 3: 3.6 s per loop
In [73]: %timeit fastNotMask(pValues, genotypes)
1 loops, best of 3: 3.98 s per loop
In [74]: testMask(pValues, genotypes)
Out[74]: 0.47606794747438386
In [75]: testNotMask(pValues, genotypes)
Out[75]: nan
In [76]: fastNotMask(pValues, genotypes)
Out[76]: 0.47613597091679449
请注意,testMask和fastNotMask之间的精度略有不同.我实际上不确定这是哪里来的,但我将假定它并不重要.