我有一个问题.我使用了这些SO线程this、this和that来获取当前位置.
我有一个DEM文件,并协调来自气象站的数据.现在,我想使用我的DEM插值遵循GIDS模型(Model 12 in this article)的气温数据.对于电台的选择,我想使用KDTree的8个最近的邻居.
简而言之,(我认为)我想使用我的DEM的坐标和高程来评估每个单元格的功能.
我已经开发了一个工作函数,该函数使用x,y作为输入来评估网格的每个值.详见我的IPython Notebook.
但是现在是整个numpy数组.我以某种方式理解我必须对函数进行向量化,以便可以将其应用于Numpy数组,而不是使用双循环.请参阅我的简化代码,以使用for循环以及使用numpy meshgrid进行矢量化函数的试验来评估我在数组上的函数.这是前进的方向吗?
>>> data = [[0.8,0.7,5,25],[2.1,0.71,6,35],[0.75,2.2,8,20],[2.2,2.1,4,18]]
>>> columns = ['Long', 'Lat', 'H', 'T']
>>> df = pd.DataFrame(data, columns=columns)
>>> tree = KDTree(zip(df.ix[:,0],df.ix[:,1]), leafsize=10)
>>> dem = np.array([[5,7,6],[7,9,7],[8,7,4]])
>>> print 'Ground points\n', df
Ground points
Long Lat H T
0 0.80 0.70 5 25
1 2.10 0.71 6 35
2 0.75 2.20 8 20
3 2.20 2.10 4 18
>>> print 'Grid to evaluate\n', dem
Grid to evaluate
[[5 7 6]
[7 9 7]
[8 7 4]]
>>> def f(x,y):
... [see IPython Notebook for details]
... return m( sum((p((d(1,di[:,0])),2)))**-1 ,
... sum(m(tp+(m(b1,(s(pix.ix[0,0],longp))) + m(b2,(s(pix.ix[0,1],latp))) + m(b3,(s(pix.ix[0,2],hp)))), (p((d(1,di[:,0])),2)))) )
...
>>> #Double for-loop
...
>>> tp = np.zeros([dem.shape[0],dem.shape[1]])
>>> for x in range(dem.shape[0]):
... for y in range(dem.shape[1]):
... tp[x][y] = f(x,y)
...
>>> print 'T predicted\n', tp
T predicted
[[ 24.0015287 18.54595636 19.60427132]
[ 28.90354881 20.72871172 17.35098489]
[ 54.69499782 43.79200925 15.33702417]]
>>> # Evaluation of vectorized function using meshgrid
...
>>> x = np.arange(0,3,1)
>>> y = np.arange(0,3,1)
>>> xx, yy = np.meshgrid(x,y, sparse=True)
>>> f_vec = np.vectorize(f) # vectorization of function f
>>> tp_vec = f_vec(xx,yy).T
>>> print 'meshgrid\nx\n', xx,'\ny\n',yy
meshgrid
x
[[0 1 2]]
y
[[0]
[1]
[2]]
>>> print 'T predicted using vectorized function\n', tp_vec
T predicted using vectorized function
[[ 24.0015287 18.54595636 19.60427132]
[ 28.90354881 20.72871172 17.35098489]
[ 54.69499782 43.79200925 15.33702417]]
编辑
我使用%% timeit来检查大小为100,100的网格的真实数据,结果如下:
#double loop
for x in range(100):
for y in range(100):
tp[x][y] = f(x,y)
1 loops, best of 3: 29.6 s per loop
#vectorized
tp_vec = f_vec(xx,yy).T
1 loops, best of 3: 29.5 s per loop
两者都不太好..
解决方法:
如果对网格使用矢量化函数,请尝试使用相关数组的形状构建网格.使用从网格网格派生的组件使用矢量化函数评估每个网格单元.像这样
def f(x,y):
'...some code...'
single_value = array[x,y] # = dependent array (e.g. DEM)
'...some code...'
return z
x = np.arange(array.shape[0])
y = np.arange(array.shape[1])
xx, yy = np.meshgrid(x,y, sparse=True)
f_vec = np.vectorize(f) # vectorization of function f
tp_vec = f_vec(xx,yy).T