java集合系列之三(ArrayList)

上一章,我们学习了Collection的架构。这一章开始,我们对Collection的具体实现类进行讲解;首先,讲解List,而List中ArrayList又最为常用。因此,本章我们讲解ArrayList。先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它。内容包括:
第1部分 ArrayList简介
第2部分 ArrayList数据结构
第3部分 ArrayList源码解析(基于JDK1.6.0_45)
第4部分 ArrayList遍历方式
第5部分 toArray()异常
第6部分 ArrayList示例

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3308556.html

第1部分 ArrayList介绍

ArrayList简介

ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。

ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList 实现了RandmoAccess接口,即提供了随机访问功能RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。稍后,我们会比较List的“快速随机访问”和“通过Iterator迭代器访问”的效率。

ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。

ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。

ArrayList构造函数

// 默认构造函数
ArrayList() // capacity是ArrayList的默认容量大小。当由于增加数据导致容量不足时,容量会添加上一次容量大小的一半。
ArrayList(int capacity) // 创建一个包含collection的ArrayList
ArrayList(Collection<? extends E> collection)

ArrayList的API

// Collection中定义的API
boolean add(E object)
boolean addAll(Collection<? extends E> collection)
void clear()
boolean contains(Object object)
boolean containsAll(Collection<?> collection)
boolean equals(Object object)
int hashCode()
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object object)
boolean removeAll(Collection<?> collection)
boolean retainAll(Collection<?> collection)
int size()
<T> T[] toArray(T[] array)
Object[] toArray()
// AbstractCollection中定义的API
void add(int location, E object)
boolean addAll(int location, Collection<? extends E> collection)
E get(int location)
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
ListIterator<E> listIterator()
E remove(int location)
E set(int location, E object)
List<E> subList(int start, int end)
// ArrayList新增的API
Object clone()
void ensureCapacity(int minimumCapacity)
void trimToSize()
void removeRange(int fromIndex, int toIndex)

第2部分 ArrayList数据结构

ArrayList的继承关系

java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.ArrayList<E> public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}

ArrayList与Collection关系如下图

java集合系列之三(ArrayList)

ArrayList包含了两个重要的对象:elementData 和 size。

(01) elementData 是"Object[]类型的数组",它保存了添加到ArrayList中的元素。实际上,elementData是个动态数组,我们能通过构造函数 ArrayList(int initialCapacity)来执行它的初始容量为initialCapacity;如果通过不含参数的构造函数ArrayList()来创建ArrayList,则elementData的容量默认是10。elementData数组的大小会根据ArrayList容量的增长而动态的增长,具体的增长方式,请参考源码分析中的ensureCapacity()函数。

(02) size 则是动态数组的实际大小

第3部分 ArrayList源码解析(基于JDK1.6.0_45)

为了更了解ArrayList的原理,下面对ArrayList源码代码作出分析。ArrayList是通过数组实现的,源码比较容易理解。

 package java.util;

 public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 序列版本号
private static final long serialVersionUID = 8683452581122892189L; // 保存ArrayList中数据的数组
private transient Object[] elementData; // ArrayList中实际数据的数量
private int size; // ArrayList带容量大小的构造函数。
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组
this.elementData = new Object[initialCapacity];
} // ArrayList构造函数。默认容量是10。
public ArrayList() {
this(10);
} // 创建一个包含collection的ArrayList
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} // 将当前容量值设为 =实际元素个数
public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
elementData = Arrays.copyOf(elementData, size);
}
} // 确定ArrarList的容量。
// 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”
public void ensureCapacity(int minCapacity) {
// 将“修改统计数”+1
modCount++;
int oldCapacity = elementData.length;
// 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
elementData = Arrays.copyOf(elementData, newCapacity);
}
} // 添加元素e
public boolean add(E e) {
// 确定ArrayList的容量大小
ensureCapacity(size + 1); // Increments modCount!!
// 添加e到ArrayList中
elementData[size++] = e;
return true;
} // 返回ArrayList的实际大小
public int size() {
return size;
} // 返回ArrayList是否包含Object(o)
public boolean contains(Object o) {
return indexOf(o) >= 0;
} // 返回ArrayList是否为空
public boolean isEmpty() {
return size == 0;
} // 正向查找,返回元素的索引值
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
} // 反向查找,返回元素的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} // 反向查找(从数组末尾向开始查找),返回元素(o)的索引值
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} // 返回ArrayList的Object数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
} // 返回ArrayList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public <T> T[] toArray(T[] a) {
// 若数组a的大小 < ArrayList的元素个数;
// 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中
if (a.length < size)
return (T[]) Arrays.copyOf(elementData, size, a.getClass()); // 若数组a的大小 >= ArrayList的元素个数;
// 则将ArrayList的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
} // 获取index位置的元素值
public E get(int index) {
RangeCheck(index); return (E) elementData[index];
} // 设置index位置的值为element
public E set(int index, E element) {
RangeCheck(index); E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
} // 将e添加到ArrayList中
public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
} // 将e添加到ArrayList的指定位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size); ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
} // 删除ArrayList指定位置的元素
public E remove(int index) {
RangeCheck(index); modCount++;
E oldValue = (E) elementData[index]; int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work return oldValue;
} // 删除ArrayList的指定元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} // 快速删除第index个元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
// 从"index+1"开始,用后面的元素替换前面的元素。
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 将最后一个元素设为null
elementData[--size] = null; // Let gc do its work
} // 删除元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 便利ArrayList,找到“元素o”,则删除,并返回true。
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} // 清空ArrayList,将全部的元素设为null
public void clear() {
modCount++; for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
} // 将集合c追加到ArrayList中
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
} // 从index位置开始,将集合c添加到ArrayList
public boolean addAll(int index, Collection<? extends E> c) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: " + index + ", Size: " + size); Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved); System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
} // 删除fromIndex到toIndex之间的全部元素。
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
elementData[--size] = null;
} private void RangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
} // 克隆函数
public Object clone() {
try {
ArrayList<E> v = (ArrayList<E>) super.clone();
// 将当前ArrayList的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
} // java.io.Serializable的写入函数
// 将ArrayList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject(); // 写入“数组的容量”
s.writeInt(elementData.length); // 写入“数组的每一个元素”
for (int i=0; i<size; i++)
s.writeObject(elementData[i]); if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
} } // java.io.Serializable的读取函数:根据写入方式读出
// 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject(); // 从输入流中读取ArrayList的“容量”
int arrayLength = s.readInt();
Object[] a = elementData = new Object[arrayLength]; // 从输入流中将“所有的元素值”读出
for (int i=0; i<size; i++)
a[i] = s.readObject();
}
}

总结
(01) ArrayList 实际上是通过一个数组去保存数据的。当我们构造ArrayList时;若使用默认构造函数,则ArrayList的默认容量大小是10
(02) 当ArrayList容量不足以容纳全部元素时,ArrayList会重新设置容量:新的容量=“(原始容量x3)/2 + 1”
(03) ArrayList的克隆函数,即是将全部元素克隆到一个数组中。
(04) ArrayList实现java.io.Serializable的方式。当写入到输出流时,先写入“容量”,再依次写入“每一个元素”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。

第4部分 ArrayList遍历方式

ArrayList支持3种遍历方式

(01) 第一种,通过迭代器遍历。即通过Iterator去遍历。

Integer value = null;
Iterator iter = list.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}

(02) 第二种,随机访问,通过索引值去遍历。
由于ArrayList实现了RandomAccess接口,它支持通过索引值去随机访问元素。

Integer value = null;
int size = list.size();
for (int i=0; i<size; i++) {
value = (Integer)list.get(i);
}

(03) 第三种,for循环遍历。如下:

Integer value = null;
for (Integer integ:list) {
value = integ;
}

下面通过一个实例,比较这3种方式的效率,实例代码(ArrayListRandomAccessTest.java)如下(省略):

由此可见,遍历ArrayList时,使用随机访问(即,通过索引序号访问)效率最高,而使用迭代器的效率最低!

第5部分 toArray()异常

当我们调用ArrayList中的 toArray(),可能遇到过抛出“java.lang.ClassCastException”异常的情况。下面我们说说这是怎么回事。

ArrayList提供了2个toArray()函数:

Object[] toArray()
<T> T[] toArray(T[] contents)

调用 toArray() 函数会抛出“java.lang.ClassCastException”异常,但是调用 toArray(T[] contents) 能正常返回 T[]。

toArray() 会抛出异常是因为 toArray() 返回的是 Object[] 数组,将 Object[] 转换为其它类型(如如,将Object[]转换为的Integer[])则会抛出“java.lang.ClassCastException”异常,因为Java不支持向下转型。具体的可以参考前面ArrayList.java的源码介绍部分的toArray()。
解决该问题的办法是调用 <T> T[] toArray(T[] contents) , 而不是 Object[] toArray()。

调用 toArray(T[] contents) 返回T[]的可以通过以下几种方式实现。

// toArray(T[] contents)调用方式二。最常用!
public static Integer[] vectorToArray2(ArrayList<Integer> v) {
Integer[] newText = (Integer[])v.toArray(new Integer[0]);
return newText;
}
上一篇:SQLserver创建与主外键的看法


下一篇:java中继承和多态的理解