nyoj 737 石子合并(一)。区间dp

http://acm.nyist.net/JudgeOnline/problem.php?pid=737

数据很小,适合区间dp的入门

对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你把[i, j]合成一堆的那一步的时候,花费肯定就是sum[i....j]

可以用纸模拟下。

那么我们设dp[i][j]表示把i...j堆合成一堆的时候的最小花费。

比如dp[1][1] = 0。dp[1][2] = a[1] + a[2];

那么要求dp[i][j],则可以是dp[i][k] + dp[k + 1][j] + cost

注意dp的时候的顺序,因为要求dp[1][n],则需要用到dp[1][k]和dp[k][n]

你需要考虑下怎么for,才能使得子问题已经被算出,建议一开始用dfs + 记忆化做。

这里dp的顺序应该是先算出2个集合的,3个、4个、......

就是先算出dp[1][2], dp[2][3],这使得求dp[1][3]成为可能。

all dp[i][i] = 0

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string> const int maxn = + ;
int n;
int a[maxn];
int dp[maxn][maxn];
int sum[maxn];
int dfs(int be, int en) {
if (be > en) return ;
if (be == en) {
return dp[be][en] = ;
}
if (dp[be][en] != inf) return dp[be][en];
for (int k = be; k <= en; ++k) {
dp[be][k] = dfs(be, k);
dp[k + ][en] = dfs(k + , en);
assert(dp[be][k] >= );
assert(dp[k + ][en] >= );
dp[be][en] = min(dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ], dp[be][en]);
// cout << dp[2][3] << endl;
}
return dp[be][en];
}
void work() {
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
sum[i] = sum[i - ] + a[i];
}
memset(dp, , sizeof dp);
// cout << dfs(1, n) << endl;
// cout << dp[2][3] << endl;
for (int k = ; k <= n - ; ++k) {
for (int i = ; i <= n - ; ++i) {
int be = i;
int en = i + k;
if (en > n) break;
dp[be][en] = inf;
for (int h = be; h <= en - ; ++h) {
dp[be][en] = min(dp[be][en], dp[be][h] + dp[h + ][en] + sum[en] - sum[be - ]);
}
}
}
printf("%d\n", dp[][n]);
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
while (scanf("%d", &n) != EOF) work();
return ;
}

平行四边形优化,其实我还不是很懂。那个证明太难了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
int n;
const int maxn = 1e3 + ;
int dp[maxn][maxn];
int s[maxn][maxn];
int sum[maxn];
void work() {
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
sum[i] = sum[i - ] + x;
dp[i][i] = ;
s[i][i] = i;
}
for (int dis = ; dis <= n - ; ++dis) {
for (int be = ; be + dis <= n; ++be) {
int en = be + dis;
dp[be][en] = inf;
int t = s[be][en];
for (int k = s[be][en - ]; k <= s[be + ][en]; ++k) {
if (k + > en) break;
if (dp[be][en] >= dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ]) {
dp[be][en] = dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ];
t = k;
}
}
s[be][en] = t;
}
}
cout << dp[][n] << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
while (scanf("%d", &n) != EOF) work();
return ;
}

简单来说,就是设s[i][j]表示第i---j堆石子合并的时候,在第s[i][j]那里合并,是最优的。

那么可以证明的是:s[i][j - 1] <= s[i][j] <= s[i + 1][j]

那么只需要枚举里面的值就好了。

上一篇:BZOJ 3229: [Sdoi2008]石子合并


下一篇:css.day02