【leetcode】Balanced Binary Tree(middle)

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

思路:

我居然在这道题上卡了一个小时。关键是对于平衡的定义,我开始理解错了,我以为是要所有叶节点的高度差不大于1.

但题目中的定义是如下这样的:

Below is a representation of the tree input: {1,2,2,3,3,3,3,4,4,4,4,4,4,#,#,5,5}:

        ____1____
/ \
2 2
/ \ / \
3 3 3 3
/\ /\ /\
4 4 4 4 4 4
/\
5 5

Let's start with the root node (1). As you can see, left subtree's depth is 5, while right subtree's depth is 4. Therefore, the condition for a height-balanced binary tree holds for the root node. We continue the same comparison recursively for both left and right subtree, and we conclude that this is indeed a balanced binary tree.

我AC的代码:我觉得我的代码就挺好挺短的。

bool isBalanced3(TreeNode* root){
int depth = ;
return isBalancedDepth(root, depth);
} bool isBalancedDepth(TreeNode* root, int &depth)
{
if(root == NULL) return true;
int depthl = , depthr = ;
bool ans = isBalancedDepth(root->left, depthl) && isBalancedDepth(root->right, depthr) && abs(depthl - depthr) < ;
depth = ((depthl > depthr) ? depthl : depthr) + ;
return ans;
}

其他人的代码,对高度多遍历了一遍,会比较慢:

bool isBalanced(TreeNode *root) {
if (!root) return true;
if (abs(depth(root->left) - depth(root->right)) > ) return false;
return isBalanced(root->left) && isBalanced(root->right);
}
int depth(TreeNode *node){
if (!node) return ;
return max(depth(node->left) + , depth(node->right) + );
}
上一篇:漫画:Linux中/etc/resolv.conf文件和puppet工具解析


下一篇:双nginx(主备、主主)反向代理tomcat实现web端负载均衡