Lecture4_1&4_2.多维随机变量及其概率分布

1.二维随机变量(X,Y)的联合分布函数:

F(x,y)=P(X≤x,Y≤y)

2.二维随机变量(X,Y)关于X的边缘分布函数:

FX(x)=P(X≤x)

   =P(X≤x,Y<+∞)

   =F(x,+∞)

3.二维离散型随机变量联合概率分布

称P(X=xi,Y=yi)=pij为(X,Y)的联合概率分布,也称概率分布或分布律

直观表示:概率分布表或分布律表

pij利用古典概型或乘法公式直接求解

4.随机变量的独立性

若P(X≤x,Y≤y)=P(X≤x)P(Y≤y),则X与Y相互独立

<==>对离散型随机变量所有取值有P(X=xi,Y=yj)=P(X=xi)P(Y=yj)

<==>对二维连续随机变量所有连续取值f(x,y)=fX(x)fY(y)

重要结论:

f(x,y)=r(x)g(y),X,Y相互独立

1.

fX(x)=fX|Y(x|y)【注:f(x|y)=f(x,y)/fY(y)】

fY(y)=fY|X(y|x)

2.

fX(x)=$\frac{r(x)}{\int\limits_{-\infty}^{+\infty}r(x)dx}$

fY(y)=$\frac{g(y)}{\int\limits_{-\infty}^{+\infty}g(y)dy}$

3.

若F(x,y)=R(x)G(y)

则F(x)=$\frac{R(x)}{R(+\infty)}$

F(y)=$\frac{G(y)}{G(+\infty)}$

上一篇:题解 [USACO 2013 Jan]Island Travels


下一篇:P1101 单词方阵