一、乘法逆元定义
乘法逆元,是指数学领域群G中任意一个元素a,都在G中有唯一的逆元a',具有性质a×a'=a'×a=e,其中e为该群的单位元。
例如:4关于1模7的乘法逆元为多少?
4X≡1 mod 7
这个方程等价于求一个X和K,满足
4X=7K+1
其中X和K都是整数。
若ax≡1 mod f, 则称a关于1模f的乘法逆元为x。也可表示为ax≡1(mod f)。
当a与f互素时,a关于模f的乘法逆元有解。如果不互素,则无解。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元。
例如,求5关于模14的乘法逆元:
14=5*2+4
5=4*1+1
说明5与14互素,存在5关于14的乘法逆元。
1=5-4=5-(14-5*2)=5*3-14
因此,5关于模14的乘法逆元为3。
二、题目描述
三、代码
#include<iostream> #include<cstdio> using namespace std; int n,m; long long inv[4000000]; int main() { scanf("%d %d",&n,&m); inv[1]=1; inv[0]=0; for(int i=2;i<=n;i++) { inv[i]=(m-m/i)*inv[m%i]%m; } for(int i=1;i<=n;i++) { printf("%lld\n",inv[i]); } return 0; }