python的函数调用中,将可变类型(list,numpy,等)传入函数做参数时,是传地址调用,这样在函数中修改变量的值时,会改变函数外变量的值
example1
import numpy as np
def func(vertices, scale):
vertices[[1,3,5,7]] *= scale
print(vertices)
vertices = np.asarray([0,1,2,3,4,5,6,7])
func(vertices, 3)
print(vertices)
[ 0 3 2 9 4 15 6 21]
[ 0 3 2 9 4 15 6 21]
改变了vertices变量的值。
如果不想改变怎么办
- 用copy()属性,copy()会返回同样值的另外一个地址
- 在函数中新建一个变量,
solution1
用copy()属性或函数
import numpy as np
def func(vertices, scale):
vertices[[1,3,5,7]] *= scale
print(vertices)
vertices = np.asarray([0,1,2,3,4,5,6,7])
func(vertices.copy(), 3)
print(vertices)
[ 0 3 2 9 4 15 6 21]
[0 1 2 3 4 5 6 7]
solution2
在函数中新建变量,不改变传入参数的值
import numpy as np
def func(vertices, scale):
new_vertices = np.zeros(vertices.shape)
new_vertices[[1,3,5,7]] = vertices[[1,3,5,7]] * scale
print(vertices)
print(new_vertices)
vertices = np.asarray([0,1,2,3,4,5,6,7])
func(vertices.copy(), 3)
print(vertices)
[0 1 2 3 4 5 6 7]
[ 0. 3. 0. 9. 0. 15. 0. 21.]
[0 1 2 3 4 5 6 7]
这里新建了一个new_vertices的变量