(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法

一、floyd

1.介绍
  floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题。
  2.思想:
   Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。
   (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
   如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。

for(i=1; i<=n; i++)
{
    for(j=1; j<=n; j++)
    {
        if ( e[i][j] > e[i][1]+e[1][j] )
            e[i][j] = e[i][1]+e[1][j];
    }
}

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
for(i=1; i<=n; i++)
    for(j=1; j<=n; j++)
        if (e[i][j] > e[i][1]+e[1][j]) 
            e[i][j]=e[i][1]+e[1][j];
//经过2号顶点
for(i=1; i<=n; i++)
    for(j=1; j<=n; j++)
        if (e[i][j] > e[i][2]+e[2][j])  
            e[i][j]=e[i][2]+e[2][j];

最后允许通过所有顶点作为中转,代码如下:

for(k=1; k<=n; k++)
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if(e[i][j]>e[i][k]+e[k][j])
                e[i][j]=e[i][k]+e[k][j];
#include <stdio.h>
#define inf 0x3f3f3f3f
int map[1000][1000];
int main()
{
    int k,i,j,n,m;
    //读入n和m,n表示顶点个数,m表示边的条数
    scanf("%d %d",&n,&m);

    //初始化
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if(i==j)
                map[i][j]=0;
            else
                map[i][j]=inf;
    int a,b,c;
    //读入边
    for(i=1; i<=m; i++)
    {
        scanf("%d %d %d",&a,&b,&c);
        map[a][b]=c;//这是一个有向图
    }

    //Floyd-Warshall算法核心语句
    for(k=1; k<=n; k++)
        for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                if(map[i][j]>map[i][k]+map[k][j] )
                    map[i][j]=map[i][k]+map[k][j];

    //输出最终的结果,最终二维数组中存的即使两点之间的最短距离
    for(i=1; i<=n; i++)
    {
        for(j=1; j<=n; j++)
        {
            printf("%10d",map[i][j]);
        }
        printf("\n");
    }
    return 0;
}

二、dijkstra

1.算法介绍:
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,Dijkstra 算法,用于对有权图进行搜索,找出图中两点的最短距离,既不是DFS搜索,也不是BFS搜索。
把Dijkstra 算法应用于无权图,或者所有边的权都相等的图,Dijkstra 算法等同于BFS搜索。
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
以这个例子演示
假设起点是D
有两个集合,一个是没被标记的U,另一个是已被标记的集合S,起初只有D点在集合S里
首先找所有与D相连的点中距离最短的,发现是C,然后把C放在集合S里,再找U集合里与起点相连的最短距离,然后标记,直至所有的点都被标记
用图来演示如下
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法

在没找到c之前 b与f与起点距离均为无穷,没有连接.

3.代码:
邻接矩阵

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAX=0x3f3f3f3f;
int map[110][110];
int dis[110];
int visit[110];
/*
关于三个数组:map数组存的为点边的信息,比如map[1][2]=3,表示1号点和2号点的距离为3
dis数组存的为起始点与每个点的最短距离,比如dis[3]=5,表示起始点与3号点最短距离为5
visit数组存的为0或者1,1表示已经走过这个点。
*/
int n,m;
int dijkstra()
{
    int i,j,pos=1,min,sum=0;
    memset(visit,0,sizeof(visit));      //初始化为0,表示开始都没走过
    for(i=1; i<=n; i++)
    {
        dis[i]=map[1][i];     //初始化第i个点到起点的距离
    }
    visit[1]=1;                  //把起点放入已被标记的集合里
    dis[1]=0;         
    int T=n-1; 
    while(T--)     //遍历n-1个点每次找出一个顶点的最短路径
    {  
        min=MAX;    
        for(j=1; j<=n; j++)
        { 
            if(visit[j]==0&&min>dis[j])    //找与起点最短距离的点并记录标号
            {
                min=dis[j];
                pos=j;
            }
        }
        visit[pos]=1;                  //表示这个点已经走过
        
           //更新未被标记的点中每个点到起点的最短距离,min是dis[pos]
        for(j=1; j<=n; j++)
        {
            if(visit[j]==0&&dis[j]>min+map[pos][j])
                 dis[j]=map[pos][j]+min;
        }
    }
    return dis[n];
}
int main()
{
    int i,j;
    while(cin>>n>>m)//n表示n个点,m表示m条边
    {
        memset(map,MAX,sizeof(map));
        int a,b,c;
        for(i=1; i<=m; i++)
        {
            cin>>a>>b>>c;
            if(c<map[a][b])//防止有重边
                map[a][b]=map[b][a]=c;
        }
        int sum=dijkstra();
        cout<<sum<<endl;
    }
    return 0;
}

邻接表实现

#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <algorithm>
#define INF 0x3f3f3f3f

using namespace std;

struct node
{
    int end;//终点
    int power;//权值
} t;

int n;//n为边数
vector<node>q[500001];//邻接表存储图的信息(相当于一个存储着结构体的二维数组)
int dis[500001];//距离数组
bool vis[500001];//标记数组

void Dijkstra(int start, int end)
{
    memset(vis, false, sizeof(vis));
    for(int i=0; i<=n; i++)
    {
        dis[i] = INF;
    }
    int len=q[start].size();
    for(int i=0; i<len; i++)
    {
        if(q[start][i].power < dis[q[start][i].end] )
            dis[q[start][i].end]=q[start][i].power; //从起点开始的dis数组更新
    }

    vis[start]=true;//起点标记为1

    for(int k=0; k<n-1; k++)
    {
        int pos, min=INF;
        for(int i=1; i<=n; i++)
        {
            if( !vis[i] && dis[i]<min )
            {
                //当前节点未被访问过且权值较小
                min=dis[i];
                pos=i;
            }
        }

        vis[pos]=true;

        //再次更新dis数组
        len=q[pos].size();
        for(int j=0; j<len; j++)
        {
            if( !vis[q[pos][j].end] && dis[ q[pos][j].end ]>q[pos][j].power+dis[pos] )
                dis[q[pos][j].end ] = q[pos][j].power + dis[pos];
        }
    }
    printf("%d\n", dis[end] );
}


int main()
{
    int m;
    while(scanf("%d %d", &n, &m)&&n&&m)//输入点和边
    {
        for(int i=0; i<=n; i++)
            q[i].clear();//将vector数组清空
        for(int i=0; i<m; i++)
        {
            int begin,end, power;
            scanf("%d %d %d", &begin, &end, &power);//输入
            /*t作为node型临时变量,为了方便压入,以下代码为无向图的输入边*/
            t.end=end;
            t.power=power;
            q[begin].push_back(t);  //输入的数据依次存到q[begin][0]、q[begin][1]里

            t.end=begin;
            t.power=power;
            q[end].push_back(t);
        }
        //Dijkstra(1, n);
        int start, end;//自己确定起始点和终止点
        scanf("%d %d", &start, &end);//输入起始点和终止点
        Dijkstra(start, end);
    }
    return 0;
}
三、Bellman-Ford(贝尔曼-福特)

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:

给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s

1.数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;

2.以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

3.为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

首先介绍一下松弛计算。如下图:
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况:
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
则不会修改点B的值,因为3+4>6。

Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:d(v) > d (u) + w(u,v),存在则返回false,表示途中存在从源点可达的权为负的回路。
之所以需要第三部分,是因为,如果存在从源点可达的权为负的回路。则应为无法收敛而导致不能求出最短路径。
考虑如下的图:
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。

在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
(最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法
此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。

所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。

代码:

int N, M;
typedef struct node
{
    int u, v;
    int cost;
} E;
node E[N];
int dis[N], pre[N];
bool Bellman()
{
    int ok;
    for(int i = 1; i <= N; ++i)
        dis[i] = (i == 1 ? 0 : MAX);
    for(int i = 1; i <= N - 1; ++i)
    {
        ok=1;
        for(int j = 1; j <= M; ++j)
            if(dis[E[j].v] > dis[E[j].u] + E[j].cost)
            {
                dis[E[j].v] = dis[E[j].u] + E[j].cost;
                ok=0;
            }
        if(ok==1)
            break;
    }
    bool flag = 1;
    for(int i = 1; i <= M; ++i)     //判断有无负环
        if(dis[E[i].v] > dis[E[i].u] + E[i].cost)
        {
            flag = 0;
            break;
        }
    return flag;
}
int main()
{
    cin>>N>>M;
    for(int i = 1; i <= M; ++i)
        cin>>E[i].u>>E[i].v>>E[i].cost;
    if(Bellman())
        cout<<dis[M];
    else
        cout<<"存在负";
    return 0;
}

四、SPFA
粗略讲讲SPFA算法的原理,SPFA算法是1994年西安交通大学段凡丁提出

是一种求单源最短路的算法

算法中需要用到的主要变量

int n; //表示n个点,从1到n标号

int s,t; //s为源点,t为终点

int d[N]; //d[i]表示源点s到点i的最短路

int p[N]; //记录路径(或者说记录前驱)

queue q; //一个队列,用STL实现,当然可有手打队列,无所谓

bool vis[N]; //vis[i]=1表示点i在队列中 vis[i]=0表示不在队列中

几乎所有的最短路算法其步骤都可以分为两步

1.初始化

2.松弛操作

初始化: d数组全部赋值为INF(无穷大);p数组全部赋值为s(即源点),或者赋值为-1,表示还没有知道前驱

         然后d[s]=0;  表示源点不用求最短路径,或者说最短路就是0。将源点入队;

(另外记住在整个算法中有顶点入队了要记得标记vis数组,有顶点出队了记得消除那个标记)

队列+松弛操作

读取队头顶点u,并将队头顶点u出队(记得消除标记);将与点u相连的所有点v进行松弛操作,如果能更新估计值(即令d[v]变小),那么就更新,另外,如果点v没有在队列中,那么要将点v入队(记得标记),如果已经在队列中了,那么就不用入队

以此循环,直到队空为止就完成了单源最短路的求解

SPFA可以处理负权边

定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。

证明:

每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

判断有无负环:

如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

SPFA的两种写法,bfs和dfs,bfs判别负环不稳定,相当于限深度搜索,但是设置得好的话还是没问题的,dfs的话判断负环很快

int spfa_bfs(int s)
{
    queue <int> q;
    memset(d,0x3f,sizeof(d));
    d[s]=0;
    memset(c,0,sizeof(c));
    memset(vis,0,sizeof(vis));

    q.push(s);  vis[s]=1; c[s]=1;
    //顶点入队vis要做标记,另外要统计顶点的入队次数
    int OK=1;
    while(!q.empty())
    {
        int x;
        x=q.front(); q.pop();  vis[x]=0;
        //队头元素出队,并且消除标记
        for(int k=f[x]; k!=0; k=nnext[k]) //遍历顶点x的邻接表
        {
            int y=v[k];
            if( d[x]+w[k] < d[y])
            {
                d[y]=d[x]+w[k];  //松弛
                if(!vis[y])  //顶点y不在队内
                {
                    vis[y]=1;    //标记
                    c[y]++;      //统计次数
                    q.push(y);   //入队
                    if(c[y]>NN)  //超过入队次数上限,说明有负环
                        return OK=0;
                }
            }
        }
    }

    return OK;

}
int spfa_dfs(int u)
{
    vis[u]=1;
    for(int k=f[u]; k!=0; k=e[k].next)
    {
        int v=e[k].v,w=e[k].w;
        if( d[u]+w < d[v] )
        {
            d[v]=d[u]+w;
            if(!vis[v])
            {
                if(spfa_dfs(v))
                    return 1;
            }
            else
                return 1;
        }
    }
    vis[u]=0;
    return 0;
}
上一篇:[算法总结目录]


下一篇:Dijkstra算法(C/C++)