Python学习——Python进程

  python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

1、Process

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。

方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

注:

is_live()用来查看进程的状态

terminate()用来终止进程。

单进程:

 import multiprocessing
import time
def worker(interval):
n=5
while n > 0:
print("The time is {0}".format(time.ctime()))
time.sleep(interval)
n -=1 if __name__ == "__main__":
p = multiprocessing.Process(target=worker,args=(3,))
p.start()
print("p.pid:",p.pid)
print("p.name:",p.name)
print("p.is_alive:",p.is_alive())

多进程:

 import multiprocessing
import time def worker_1(interval):
print ("worker_1")
time.sleep(interval)
print ("end worker_1") def worker_2(interval):
print ("worker_2")
time.sleep(interval)
print ("end worker_2") def worker_3(interval):
print ("worker_3")
time.sleep(interval)
print ("end worker_3") if __name__ == "__main__":
p1 = multiprocessing.Process(target = worker_1, args = (2,))
p2 = multiprocessing.Process(target = worker_2, args = (3,))
p3 = multiprocessing.Process(target = worker_3, args = (4,)) p1.start()
p2.start()
p3.start()
# 用来获得当前的CPU的核数,可以用来设置接下来子进程的个数。
# 用来获得当前所有的子进程,包括daemon和非daemon子进程。
# p.name,p.pid分别表示进程的名字,进程id。
print("The number of CPU is:" + str(multiprocessing.cpu_count()))
for p in multiprocessing.active_children():
print("child p.name:" + p.name + "\tp.id" + str(p.pid))
print ("END!!!!!!!!!!!!!!!!!")

将进程定义为类:

 import multiprocessing
import time class ClockProcess(multiprocessing.Process):
def __init__(self, interval):
multiprocessing.Process.__init__(self)
self.interval = interval def run(self):
n = 5
while n > 0:
print("the time is {0}".format(time.ctime()))
time.sleep(self.interval)
n -= 1 if __name__ == '__main__':
p = ClockProcess(3)
p.start()

daemon程序对比结果:
1.不加daemon

 import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print ("end!") #程序运行结果
'''
end!
work start:Wed Jun 28 00:07:57 2017
work end:Wed Jun 28 00:08:00 2017
'''

2.加daemon

 import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
print ("end!") #程序运行结果
'''
end! '''

PS:因子进程设置了daemon属性,主进程结束,它们就随着结束了。
3.设置daemon执行完结束的方法

 import multiprocessing
import time def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime())); if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
p.join()
print "end!" # 结果
'''
work start:Tue Apr 21 22:16:32 2015
work end:Tue Apr 21 22:16:35 2015
end!
'''

2、Lock
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

 import multiprocessing
import sys def worker_with(lock, f):
with lock:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lockd acquired via with\n")
n -= 1
fs.close() def worker_no_with(lock, f):
lock.acquire()
try:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lock acquired directly\n")
n -= 1
fs.close()
finally:
lock.release() if __name__ == "__main__":
lock = multiprocessing.Lock()
f = "file.txt"
w = multiprocessing.Process(target = worker_with, args=(lock, f))
nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
w.start()
nw.start()
print ("end")

3、Semaphore
Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

 import multiprocessing
import time def worker(s, i):
s.acquire()
print(multiprocessing.current_process().name + "acquire")
time.sleep(i)
print(multiprocessing.current_process().name + "release\n")
s.release() if __name__ == "__main__":
s = multiprocessing.Semaphore(2) # 限制最多有两个进程同时执行
for i in range(5):
p = multiprocessing.Process(target = worker, args=(s, i*2))
p.start()

运行结果:

 Process-4acquire
Process-2acquire
Process-2release Process-1acquire
Process-1release Process-3acquire
Process-4release Process-5acquire
Process-3release Process-5release

4、Event
Event实现进程间同步通信

 import multiprocessing
import time def wait_for_event(e):
print("wait_for_event: starting")
e.wait()
print("wairt_for_event: e.is_set()->" + str(e.is_set())) def wait_for_event_timeout(e, t):
print("wait_for_event_timeout:starting")
e.wait(t)
print("wait_for_event_timeout:e.is_set->" + str(e.is_set())) if __name__ == "__main__":
e = multiprocessing.Event()
w1 = multiprocessing.Process(name = "block",
target = wait_for_event,
args = (e,)) w2 = multiprocessing.Process(name = "non-block",
target = wait_for_event_timeout,
args = (e, 2))
w1.start()
w2.start() time.sleep(3) e.set()
print("main: event is set") # 运行结果
''' wait_for_event: starting wait_for_event_timeout:starting wait_for_event_timeout:e.is_set->False main: event is set wairt_for_event: e.is_set()->True '''

5、Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
 
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。
 import multiprocessing
def writer_proc(q):
try:
q.put(1, block = False)
except:
pass def reader_proc(q):
try:
print (q.get(block = False))
except:
pass if __name__ == "__main__":
q = multiprocessing.Queue()
writer = multiprocessing.Process(target=writer_proc, args=(q,))
writer.start() reader = multiprocessing.Process(target=reader_proc, args=(q,))
reader.start() reader.join()
writer.join() # 运行结果
#

6、Pipe

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
 
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

Pipe可以是单向(half-duplex),也可以是双向(duplex)。我们通过mutiprocessing.Pipe(duplex=False)创建单向管道 (默认为双向)。一个进程从PIPE一端输入对象,然后被PIPE另一端的进程接收,单向管道只允许管道一端的进程输入,而双向管道则允许从两端输入。

 # proc1 发送消息,proc2,proc3轮流接收消息
import multiprocessing
import time def proc1(pipe):
while True:
for i in range(100):
print ("send: %s" %(i))
pipe.send(i)
time.sleep(1) def proc2(pipe):
while True:
print ("proc2 rev:", pipe.recv())
time.sleep(1) def proc3(pipe):
while True:
print ("proc3 rev:", pipe.recv())
time.sleep(1) if __name__ == "__main__":
pipe = multiprocessing.Pipe()
p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
p3 = multiprocessing.Process(target=proc3, args=(pipe[1],)) p1.start()
p2.start()
p3.start() p1.join()
p2.join()
p3.join() # 运行结果
'''
send: 0
proc2 rev: 0
send: 1
proc3 rev: 1
send: 2
proc2 rev: 2
send: 3
proc3 rev: 3
send: 4
proc2 rev: 4
send: 5
proc3 rev: 5
send: 6
proc2 rev: 6
send: 7
proc3 rev: 7
send: 8
proc2 rev: 8
send: 9
proc3 rev: 9
send: 10
proc2 rev: 10
......
'''

7、Pool
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行它。

使用进程池(非阻塞)

 import multiprocessing
import time def func(msg):
print ("msg:", msg)
time.sleep(3)
print ("end") if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3) # 池中最大进程数为3
for i in range(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print ("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print ("Sub-process(es) done.")

运行结果:

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
msg: hello 0
msg: hello 1
msg: hello 2
end
msg: hello 3
end
msg: hello 4
end
msg: hello 5
end
msg: hello 6
end
msg: hello 7
end
msg: hello 8
end
msg: hello 9
end
end
end
Sub-process(es) done.

函数解释:

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,range(4)会相继产生四个对象[0, 1, 2, 3,4,5,6,7,8,9],十个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

使用线程池(阻塞)

 import multiprocessing
import time def func(msg):
print ("msg:", msg)
time.sleep(3)
print ("end") if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3) # 池中最大进程数为3
for i in range(10):
msg = "hello %d" %(i)
pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print ("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
pool.close()
pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
print ("Sub-process(es) done.") # 运行结果
'''
msg: hello 0
end
msg: hello 1
end
msg: hello 2
end
msg: hello 3
end
msg: hello 4
end
msg: hello 5
end
msg: hello 6
end
msg: hello 7
end
msg: hello 8
end
msg: hello 9
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done.
'''

使用多个进程池

 import multiprocessing
import os, time, random def Lee():
print("\nRun task Lee-%s" % (os.getpid())) # os.getpid()获取当前的进程的ID
start = time.time()
time.sleep(random.random() * 10) # random.random()随机生成0-1之间的小数
end = time.time()
print( 'Task Lee, runs %0.2f seconds.' % (end - start)) def Marlon():
print("\nRun task Marlon-%s" % (os.getpid()))
start = time.time()
time.sleep(random.random() * 40)
end = time.time()
print('Task Marlon runs %0.2f seconds.' % (end - start)) def Allen():
print("\nRun task Allen-%s" % (os.getpid()))
start = time.time()
time.sleep(random.random() * 30)
end = time.time()
print('Task Allen runs %0.2f seconds.' % (end - start)) def Frank():
print( "\nRun task Frank-%s" % (os.getpid()))
start = time.time()
time.sleep(random.random() * 20)
end = time.time()
print( 'Task Frank runs %0.2f seconds.' % (end - start)) if __name__ == '__main__':
function_list = [Lee, Marlon, Allen, Frank]
print("parent process %s" % (os.getpid())) pool = multiprocessing.Pool(4)
for func in function_list:
pool.apply_async(func) # Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print('Waiting for all subprocesses done...')
pool.close()
pool.join() # 调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
print( 'All subprocesses done.') # 运行结果
'''
parent process 3256
Waiting for all subprocesses done... Run task Lee-2196 Run task Marlon-4580 Run task Allen-5920 Run task Frank-6384
Task Allen runs 2.15 seconds.
Task Lee, runs 9.99 seconds.
Task Frank runs 14.14 seconds.
Task Marlon runs 32.74 seconds.
All subprocesses done. '''
上一篇:***阿里云linux 下怎么配置虚拟主机


下一篇:Codeforces Beta Round #97 (Div. 1) C. Zero-One 数学