今天的作业是求两幅图像的MSE、SNR、PSNR、SSIM.代码如下:
clc;
close all;
X = imread('q1.tif');% 读取图像
Y=imread('q2.tif');
figure;% 展示图像
subplot(1, 3, 1); imshow(X); title('q1');
subplot(1, 3, 2); imshow(Y); title('q2');
% 使得图像每个像素值为浮点型
X = double(X);
Y = double(Y); A = Y-X;
B = X.*Y;
subplot(1,3,3);imshow(A);title('作差');
MSE = sum(A(:).*A(:))/numel(Y);% 均方根误差MSE,numel()函数返回矩阵元素个数
SNR = 10*log10(sum(X(:).*X(:))/MSE/numel(Y));%信噪比SNR
PSNR = 10*log10(255^2/MSE);% 峰值信噪比PSNR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为结构相似度SSIM
ux=sum(X(:).*X(:))/numel(X);
uy=sum(Y(:).*Y(:))/numel(Y);
sigmoidx=sum(X(:).*X(:)-ux)/numel(X);
sigmoidy=sum(Y(:).*Y(:)-uy)/numel(Y);
sigmoidxy=sum(B(:).*B(:))/(numel(B)*ux*uy)-ux*uy;
SSIM=(2*ux*uy)*(2*sigmoidxy)/(ux*ux+uy*uy)/(sigmoidx*sigmoidx+sigmoidy*sigmoidy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% display(MSE);%均方根误差MSE
display(SNR);%信噪比SNR
display(PSNR);%峰值信噪比PSNR
display(SSIM);%结构相似性SSIM
接下来,让我们看一下代码的输出。
MSE =153.6263 SNR =19.7617 PSNR =26.2661 SSIM =-1.5281e+26
根据观察,两幅图像可能来自于连拍,图片中的内容几乎完全一致。仅仅是对应的像素点产生了偏移。上图图三反应的是两幅图像作差以后的结果。根据均方根误差MSE,我们发现从数据上两幅图存在有巨大差异。这显然不符合我们的观察。作为图像质量评价指标,客观评价MSE与人眼的主观判断产生出入,这说明MSE并不是一个合适的指标。原因是:MSE指标的核心在于两幅图像相应像素点之间差值的平方和。这直接导致了该指标对于图像的空间分布没有“全局”认识,而只是局限于单纯的像素“个体”。
而SNR和PSNR,在本例中取得了较好的效果。不过,个人认为在高熵图像中容易失效,在具有足够多中心点的着色过的Vornoi图和其平移图像中,SNR和PSNR将会难有成效。
对于SSIM,SSIM综合考虑了两幅图像的均值、方差,以及他们的协方差,从而在本例中取得了非常好的效果。
2019-03-04
23:14:07