codeforces 451E Devu and Flowers

题意:有n个瓶子每个瓶子有 f【i】 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案。

思路: 如果每个瓶子的花有无穷多。那么这个问题可以转化为  s支花分到n个瓶子有多少种方案  用隔板法就能解决 C(s+n-1,n-1) 。有限制之后我们可以 用 没限制的去减掉那些违反限制的 如果只有一个瓶子取得花超出上限 那么减去,两个瓶子 要加上(容斥原理) n只有20  就能暴力枚举那些取超过上限f【i】的瓶子并且在这些瓶子至少选出 f【i】+1 支花  统计即可。

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 1000000007
#define LL long long
using namespace std;
LL qmod(LL a,LL b)
{
LL res=;
if(a>=MOD)a%=MOD;
while(b)
{
if(b&)res=res*a%MOD;
a=a*a%MOD;
b>>=;
}
return res;
}
LL inv(LL a)
{
return qmod(a,MOD-);
}
LL invmod[];
LL C(LL n,LL m)
{
if(n<m)return ;
LL ans=;
for(int i=;i<=m;++i)
ans=(n-i+)%MOD*ans%MOD*invmod[i]%MOD;
return ans;
}
LL f[],n,s;
LL ans;
void gao(int now,LL sum,int flag)
{
if(sum>s)return ;
if(now==n)
{
ans+=flag*C(s-sum+n-,n-);
ans%=MOD;
// printf("%I64d\n",ans);
return ;
}
gao(now+,sum,flag);
gao(now+,sum+f[now]+,-flag);
}
int main() {
for(int i=;i<=;++i)
invmod[i]=qmod(i,MOD-);
cin>>n>>s;
for(int i=;i<n;++i)
cin>>f[i];
ans=;
gao(,,);
cout<<(ans%MOD+MOD)%MOD<<endl;
return ;
}
上一篇:1014: [JSOI2008]火星人prefix


下一篇:vijos题解