首先讲讲什么是回文, 看看Wiki是怎么说的:回文,亦称回环,是正读反读都能读通的句子。亦有将文字排列成圆圈者,是一种修辞方式和文字游戏。回环运用得当。能够表现两种事物或现象相互依靠或排斥的关系, 比方madam,abba,这样正反都一样的串就是回文串。
今天要写的问题了就是在一个字符串中找出最长的回文字串。比方串:"abcdedabakml"。 他的最长回文字串就是"abcdedaba"。一般的方法有暴力法,动态规划法,今天来写一个时间复杂度为O(n)的算法。
回文匹配,普通情况会分奇数和偶数来分开进行设计算法来统计,今天介绍的算法又一次构造了一个字符串,这个新字符串消除了之前的奇偶区别,使得仅仅用设计一种算法就能够。
1. 首先,构造新的字符串T
构造方法:在原字符串S的首尾和每一个字符之间增加一个特殊字符'#', 比如S: abba, 则构造后为T: #a#b#b#a#(注:在程序中为防止越界会在首尾再加两个字符,即^#a#b#b#a#$);
2. 关键算法:
a[ ]: a[i]代表以位置 i 为中心向左向右可扩展的长度
idx: 当前取得最大回文的中心位置
R: 以 idx 为中心。向右扩展 p[idx] 位的最右位置
j: 与 i 关于 idx 对称的位置
i: 0 1 2 3 4 5 6 7 8 9
T: ^ # a # b # b # a # $
a: 0 1 0 1 4 1 0 1 0
idx R
此算法的关键之处在于: 当 i<R时,a[i] 有例如以下简便计算公式 a[i] = min(R-i, a[j]):
A. 当 R - i > a[j] 的时候,以T[j]为中心的回文子串包括在以T[mid]为中心的回文子串中,因为 i 和 j 对称,以T[i]为中心的回文子串必定包括在以T[mid]为中心的回文子串中,所以必有 a[i] = a[j], 例如以下图:此时a[i] = a[j] = 1;
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3dhZ2xl/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
B. 当 R - i < a[j] 的时候,以T[j]为中心的回文子串不一定全然包括于以T[mid]为中心的回文子串中。可是基于对称性可知,下图中两个绿框所包围的部分是同样的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到 R 的位置,也就是说 a[i] >= R-i。至于R之后的部分是否对称,就仅仅能老老实实去匹配了。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3dhZ2xl/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
3. 得到所求字符串
找出 p[ ] 数组中最大的值及其下标,记为max和index。
所求字符串为string(s, (index-1-max)/2, max)
4. 实现算法:
// Transform S into T.
// For example, S = "abba", T = "^#a#b#b#a#$".
// ^ and $ signs are sentinels appended to each end to avoid bounds checking
string preProcess(string s) {
int n = s.length();
if (n == 0) return "^$";
string ret = "^";
for (int i = 0; i < n; i++)
ret += "#" + s.substr(i, 1);
ret += "#$";
return ret;
} string longestPalindrome(string s) {
string T = preProcess(s);
int n = T.length();
int *a = new int[n];
int mid = 0, R = 0;
for (int i = 1; i < n-1; i++) {
int j = 2*mid-i; // 找到i关于mid对称的位置
a[i] = (R > i) ? min(R-i, a[j]) : 0;
// Attempt to expand palindrome centered at i
while (T[i + 1 + a[i]] == T[i - 1 - a[i]])
a[i]++;
// If palindrome centered at i expand past R,
// adjust center based on expanded palindrome.
if (i + a[i] > R) {
mid = i;
R = i + a[i];
}
}
// Find the maximum element in a.
int maxLen = 0;
int centerIndex = 0;
for (int i = 1; i < n-1; i++) {
if (a[i] > maxLen) {
maxLen = a[i];
centerIndex = i;
}
}
delete[] a;
return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
}
參考文章:
http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
另外,我本人开通了微信公众号--分享技术之美,我会不定期的分享一些我学习的东西.
(转载文章请注明出处: http://blog.csdn.net/swagle/article/details/24384693 )