论文简读《Exploring Categorical Regularization for Domain Adaptive Object Detection》

https://arxiv.org/pdf/2003.09152.pdf
论文简读《Exploring Categorical Regularization for Domain Adaptive Object Detection》提出类别正则化框架,主要使用多标签分类来进行实现前景物体的弱监督。

It is widely acknowledged that CNNs trained for singlelabel image classification tend to produce high responses on the local regions containing the main objects [38, 40, 39]. Analogously, CNNs trained for multi-label classification also have the weakly localization ability for the objects associated with image-level categories [35, 36].

并将图像级(Image Level)的多标签结果与实例级(Instance Level)的预测结果进行监督,挖掘目标域实例中的难样本(对实例赋予不同的损失权重)。

source code

        target_weight = []
        for i in range(len(tgt_pre_label)):
            label_i = tgt_pre_label[i].item()
            if label_i > 0:
                diff_value = torch.exp(
                    weight_value
                    * torch.abs(tgt_image_cls_feat[label_i - 1] - tgt_prob[i][label_i])
                ).item()
                target_weight.append(diff_value)
            else:
                target_weight.append(1.0)

        tgt_instance_loss = nn.BCELoss(
            weight=torch.Tensor(target_weight).view(-1, 1).cuda()
        )
上一篇:JavaScript将表单数据发布到新窗口,而没有“目标”


下一篇:Android中的BroadCast接收器对话框问题