You are given a data structure of employee information, which includes the employee's unique id, his importance value and his direct subordinates' id.
For example, employee 1 is the leader of employee 2, and employee 2 is the leader of employee 3. They have importance value 15, 10 and 5, respectively. Then employee 1 has a data structure like [1, 15, [2]], and employee 2 has [2, 10, [3]], and employee 3 has [3, 5, []]. Note that although employee 3 is also a subordinate of employee 1, the relationship is not direct.
Now given the employee information of a company, and an employee id, you need to return the total importance value of this employee and all his subordinates.
Example 1:
Input: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1 Output: 11 Explanation: Employee 1 has importance value 5, and he has two direct subordinates: employee 2 and employee 3. They both have importance value 3. So the total importance value of employee 1 is 5 + 3 + 3 = 11.
Note:
- One employee has at most one direct leader and may have several subordinates.
- The maximum number of employees won't exceed 2000.
给定一个保存员工信息的数据结构,它包含了员工唯一的id,重要度 和 直系下属的id。
比如,员工1是员工2的领导,员工2是员工3的领导。他们相应的重要度为15, 10, 5。那么员工1的数据结构是[1, 15, [2]],员工2的数据结构是[2, 10, [3]],员工3的数据结构是[3, 5, []]。注意虽然员工3也是员工1的一个下属,但是由于并不是直系下属,因此没有体现在员工1的数据结构中。
现在输入一个公司的所有员工信息,以及单个员工id,返回这个员工和他所有下属的重要度之和。
示例 1:
输入: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1 输出: 11 解释: 员工1自身的重要度是5,他有两个直系下属2和3,而且2和3的重要度均为3。因此员工1的总重要度是 5 + 3 + 3 = 11。
注意:
- 一个员工最多有一个直系领导,但是可以有多个直系下属
- 员工数量不超过2000。
4ms
1 /* 2 // Employee info 3 class Employee { 4 // It's the unique id of each node; 5 // unique id of this employee 6 public int id; 7 // the importance value of this employee 8 public int importance; 9 // the id of direct subordinates 10 public List<Integer> subordinates; 11 }; 12 */ 13 class Solution { 14 HashMap<Integer,Employee> h; 15 public int getImportance(List<Employee> employees, int id) { 16 h = new HashMap<Integer,Employee>(); 17 for(Employee emp: employees) 18 h.put(emp.id,emp); 19 return dfs(id); 20 } 21 22 public int dfs(int id){ 23 Employee e = h.get(id); 24 int ans = e.importance; 25 for(Integer sub:e.subordinates) 26 ans += dfs(sub); 27 return ans; 28 } 29 }
5ms
1 class Solution { 2 3 private int getSum(HashMap<Integer, Employee> map, int id){ 4 int sum = map.get(id).importance; 5 for(int sub : map.get(id).subordinates){ 6 sum += getSum(map, sub); 7 } 8 return sum; 9 } 10 11 public int getImportance(List<Employee> employees, int id) { 12 HashMap<Integer, Employee> map = new HashMap<Integer, Employee>(); 13 14 for(Employee e : employees){ 15 map.put(e.id, e); 16 } 17 18 return getSum(map, id); 19 } 20 }
6ms
1 class Solution { 2 public int getImportance(List<Employee> employees, int id) { 3 HashMap<Integer, Integer> map = new HashMap<>(); 4 HashMap<Integer, List<Integer>> rela = new HashMap<>(); 5 for (Employee emp : employees) { 6 rela.put(emp.id, emp.subordinates); 7 map.put(emp.id, emp.importance); 8 } 9 int sum = 0; 10 List<Integer> list = new ArrayList<>(); 11 list.add(id); 12 while (list.size() > 0) { 13 List<Integer> next = new ArrayList<>(); 14 for (int i : list) { 15 sum += map.get(i); 16 if (rela.containsKey(i)) { 17 next.addAll(rela.get(i)); 18 } 19 } 20 list = next; 21 } 22 return sum; 23 } 24 }