文章目录
- FastTest model
- 1.准备数据
- 构建模型
- 构建FastText实例
- 查看有多少模型参数
- 将预训练词向量传进模型中的embedding layer层
- 将unknown 和 pad token 的词向量初始化为0
- 设置优化器
- 定义损失函数
- 定义求精确度的函数
- 定义训练函数
- 定义评估函数
- 定义计算耗时的函数
- 训练模型
- 测试
- 实际预测
FastTest model
这篇文章会采用"FastText"模型,跟之前的LSTM的84%左右的精确度相比差不多,但速度快上一倍,只需要训练LSTM一般的模型参数。
1.准备数据
FastText 模型中有个重要概念,是计算输入句子的n-grams,并将其附在句子的后面。这里我们使用bi-grams,就是一个句子里连续的一对词
例如句子是 “how are you ?”, bi-gram:“how are”, “are you” and “you ?”.
创建一个generate_bigrams函数,接收的是一个已经tokenized的句子,计算bi-grams然后将其放到tokenized list的最后。
def generate_bigrams(x):
n_grams = set(zip(*[x[i:] for i in range(2)]))
for n_gram in n_grams:
x.append(' '.join(n_gram))
return x
举例:
generate_bigrams(['This', 'film', 'is', 'terrible'])
[‘This’, ‘film’, ‘is’, ‘terrible’, ‘This film’, ‘film is’, ‘is terrible’]
TorchText Fields对象有一个preprocessing参数。如果将一个函数传进这个参数,那么一个句子被tokenized后,且在被数字化成索引向量之前,会被应用上传进去的那个函数
因为我们不是用的RNN,不需要对句子进行pad操作,因此不需要设置include_lengths = True.
import torch
from torchtext import data
from torchtext import datasets
SEED = 1234
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
TEXT = data.Field(tokenize = 'spacy', preprocessing = generate_bigrams) # 预处理步骤
LABEL = data.LabelField(dtype = torch.float)
加载数据
import random
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
train_data, valid_data = train_data.split(random_state = random.seed(SEED))
构建单词表和预训练的词向量
MAX_VOCAB_SIZE = 25_000
TEXT.build_vocab(train_data,
max_size = MAX_VOCAB_SIZE,
vectors = "glove.6B.100d",
unk_init = torch.Tensor.normal_)
LABEL.build_vocab(train_data)
构建迭代器
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = BATCH_SIZE,
device = device)
构建模型
这个模型有较少的训练参数,因为它只有两层,嵌入层和线性连接层 embedding layer and the linear layer.
首先模型先用Embedding layer(蓝色的那层)为每个词计算word embedding,然后计算所有词的平均word embedding(粉红色),将结果输进线性连接层(白色)。
使用的是avg_pool2d来做平均,
import torch.nn as nn
import torch.nn.functional as F
class FastText(nn.Module):
def __init__(self, vocab_size, embedding_dim, output_dim, pad_idx):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.fc = nn.Linear(embedding_dim, output_dim)
def forward(self, text):
#text = [sent len, batch size]
embedded = self.embedding(text)
#embedded = [sent len, batch size, emb dim]
embedded = embedded.permute(1, 0, 2)
#embedded = [batch size, sent len, emb dim]
pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1) # 池化层
#pooled = [batch size, embedding_dim]
return self.fc(pooled)
构建FastText实例
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
OUTPUT_DIM = 1
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
model = FastText(INPUT_DIM, EMBEDDING_DIM, OUTPUT_DIM, PAD_IDX)
查看有多少模型参数
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count_parameters(model):,} trainable parameters')
将预训练词向量传进模型中的embedding layer层
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
将unknown 和 pad token 的词向量初始化为0
UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]
model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)
设置优化器
import torch.optim as optim
optimizer = optim.Adam(model.parameters())
定义损失函数
criterion = nn.BCEWithLogitsLoss()
model = model.to(device)
criterion = criterion.to(device)
定义求精确度的函数
def binary_accuracy(preds, y):
"""
Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
"""
#round predictions to the closest integer
rounded_preds = torch.round(torch.sigmoid(preds))
correct = (rounded_preds == y).float() #convert into float for division
acc = correct.sum() / len(correct)
return acc
定义训练函数
因为我们不再使用dropout 所以我们不需要调用model.train()
def train(model, iterator, optimizer, criterion):
epoch_loss = 0
epoch_acc = 0
model.train()
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
定义评估函数
尽管不需要dropout,还是调用model.eval()
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
定义计算耗时的函数
import time
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
训练模型
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut3-model.pt')
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
Epoch: 01 | Epoch Time: 0m 6s
Train Loss: 0.688 | Train Acc: 57.23%
Val. Loss: 0.642 | Val. Acc: 71.23%
Epoch: 02 | Epoch Time: 0m 5s
Train Loss: 0.653 | Train Acc: 71.09%
Val. Loss: 0.521 | Val. Acc: 75.28%
Epoch: 03 | Epoch Time: 0m 5s
Train Loss: 0.582 | Train Acc: 78.88%
Val. Loss: 0.449 | Val. Acc: 79.64%
Epoch: 04 | Epoch Time: 0m 5s
Train Loss: 0.505 | Train Acc: 83.15%
Val. Loss: 0.426 | Val. Acc: 82.12%
Epoch: 05 | Epoch Time: 0m 5s
Train Loss: 0.439 | Train Acc: 85.99%
Val. Loss: 0.397 | Val. Acc: 85.02%
测试
model.load_state_dict(torch.load('tut3-model.pt'))
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
实际预测
要实际预测时,对输入的句子添加bi-grams
import spacy
nlp = spacy.load('en')
def predict_sentiment(model, sentence):
model.eval()
tokenized = generate_bigrams([tok.text for tok in nlp.tokenizer(sentence)])
indexed = [TEXT.vocab.stoi[t] for t in tokenized]
tensor = torch.LongTensor(indexed).to(device)
tensor = tensor.unsqueeze(1)
prediction = torch.sigmoid(model(tensor))
return prediction.item()
predict_sentiment(model, "This film is terrible")