b站视频链接https://www.bilibili.com/video/BV1Y7411d7Ys?p=5
利用pytorch进行深度学习分为以下4个步骤
- 准备数据集(用dataloader和dataset)
- 设计模型(设计 计算图)
- 构建损失函数和优化器(也就是loss函数和optimizer)
- 开始循环训练(前馈算损失,反馈算梯度,更新权重)
广播机制
关于Linear类的介绍
非常好理解
有关python魔法函数的介绍
https://blog.csdn.net/u012609509/article/details/78557650
https://blog.csdn.net/qq_40522828/article/details/89682452
https://zhuanlan.zhihu.com/p/57656253
代码:
import torch
import matplotlib.pyplot as plt
# prepare dataset
# x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征
# 行是数据数量,列是数据feature
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
#画图
epoch_list=[]
loss_list=[]
# design model using class
"""
关于torch.nn.Module的介绍
实现了__call__()函数,call中又有forward函数
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called
官网文档
https://pytorch.org/docs/1.7.0/generated/torch.nn.Linear.html#torch.nn.Linear
"""
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的
# 该线性层需要学习的参数是w和b 获取w/b的方式分别是~linear.weight/linear.bias
self.linear = torch.nn.Linear(1, 1)
# override了Module中的forward方法,必须重写
def forward(self, x):
# 这里linear因为实现了__call__函数,call函数调用了forward函数,所以我们直接用即可
y_pred = self.linear(x) #计算y=wx+b
return y_pred
model = LinearModel()
# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # model.parameters()自动完成参数的初始化操作
# model.parameters()可以自动找到参数w和b(所有参数),并且计算梯度
# 这里的 SGD是批量梯度下降,因为3个数据是一个batch
# 不要见到SGD就是随机梯度下降
# Adagrad Adam adamax ASGD RMSprop Rprop SGD七种优化器可以代替SGD,效果都不一样
# training cycle forward, backward, update
for epoch in range(100):
y_pred = model(x_data) # forward:predict,这句话实现了前向传播
loss = criterion(y_pred, y_data) # forward: loss
print(epoch, loss.item())
# 画图
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad() # 必须先清0,再backwards,与之前的代码不一样
loss.backward() # backward: autograd,自动计算梯度
optimizer.step() # update 参数,即更新w和b的值,也就是w=w-α*grad
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
# 总结:pytorch实现线性回归分为4个步骤
# 1、prepare dataset
#
# 2、design model using Class # 目的是为了前向传播forward,即计算y hat(预测值)
#
# 3、Construct loss and optimizer (using PyTorch API) 其中,计算loss是为了进行反向传播,optimizer是为了更新梯度。
#
# 4、Training cycle (forward,backward,update)
# 画图
plt.plot(epoch_list,loss_list)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()
纯净版代码
import torch
import matplotlib.pyplot as plt
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
epoch_list=[]
loss_list=[]
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_pred = self.linear(x)
return y_pred
model = LinearModel()
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list,loss_list)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()