Prime Path
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
Input
Output
Sample Input
3
1033 8179
1373 8017
1033 1033
Sample Output
6
7
0 题意:题目较长,实际就是给你两个四位素数,让你每次只能更改第一个素数的其中一位,更改后要求也是素数且位数不变,问你至少需要更改几次才能变成第二个素数。无解输出Impossible。
思路:本题涉及到素数,每次更改后均需要判断,所以避免重复计算,在程序开始先用筛法把每个四位数的素数性提前存到数组prime。之后分别更改一位数值(第一位不可能是0,最后一位只能是奇数),记录下变更次数即可。
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; int prime[],bo[];
struct Node{
int x,s;
}node; int main()
{
int t,a,b,f,i,j;
prime[]=;
for(i=;i<=;i++){
if(!prime[i]){
for(j=;i*j<=;j++){
prime[i*j]=; //素数筛选
}
}
}
scanf("%d",&t);
while(t--){
queue<Node> q;
memset(bo,,sizeof(bo));
scanf("%d%d",&a,&b);
if(a==b) printf("0\n");
else{
bo[a]=;
node.x=a;
node.s=;
q.push(node);
f=;
while(q.size()){
int tx=q.front().x;
for(i=;i<=;i++){
if(i!=tx%&&!prime[tx-tx%+i]&&bo[tx-tx%+i]==){
if(tx-tx%+i==b){
f=q.front().s+;
break;
}
bo[tx-tx%+i]=;
node.x=tx-tx%+i;
node.s=q.front().s+;
q.push(node);
}
if(i!=tx/%&&!prime[tx-tx/%*+i*]&&bo[tx-tx/%*+i*]==){
if(tx-tx/%*+i*==b){
f=q.front().s+;
break;
}
bo[tx-tx/%*+i*]=;
node.x=tx-tx/%*+i*;
node.s=q.front().s+;
q.push(node);
}
if(i!=tx/%&&!prime[tx-tx/%*+i*]&&bo[tx-tx/%*+i*]==){
if(tx-tx/%*+i*==b){
f=q.front().s+;
break;
}
bo[tx-tx/%*+i*]=;
node.x=tx-tx/%*+i*;
node.s=q.front().s+;
q.push(node);
}
if(i!=&&i!=tx/&&!prime[tx-tx/*+i*]&&bo[tx-tx/*+i*]==){
if(tx-tx/*+i*==b){
f=q.front().s+;
break;
}
bo[tx-tx/*+i*]=;
node.x=tx-tx/*+i*;
node.s=q.front().s+;
q.push(node);
}
}
if(f!=) break;
q.pop();
}
if(f==) printf("Impossible\n");
else printf("%d\n",f);
}
}
return ;
}