Python一次性获取各个业务对接的数据量和存储大小

 

Python一次性获取各个业务对接的数据量

根据表名模糊查找或者表明列表

 

# -*- coding: utf-8
import json
import pandas as pd
import pymysql
import time


def main():
    dataSum = []  # 数据总量
    dataRealtimeSum = []  # 实时数据
    dataJingtaiSum = []  # 静态数据

    datasizeSum = []  # 数据大小
    datasizeRealtimeSum = []  # 实时数据大小
    datasizeJingtaiSum = []  # 静态数据大小

    connInfo = "connInfo-format.json"
    connFile = open(connInfo, 'r', encoding='utf8')
    connRecords = connFile.read(102400)
    connRecordsjs = json.loads(connRecords)
    conn = pymysql.connect(host='localhost', port=3306, user='root', passwd='root', charset='utf8')

    #write_txt(filename_overview, " ".join(["实时静态", "委办局", "数据库", "数据表", "数据大小M", "索引大小M", "行数"]))
    write_txt(filename_overview, " ".join(["实时/静态", "委办局", "行数",  "数据大小M", "索引大小M"]))

    for single in connRecordsjs:
        sql = ""
        if "共享平台" in single.get("key"):
            sql = "select " \
                  "table_schema, " \
                  "table_name, " \
                  "table_comment, " \
                  "round(data_length/1024/1024, 2) as 'datasizeM', " \
                  "round(index_length/1024/1024, 2) as 'indexsizeM', " \
                  "table_rows as 'rows' " \
                  "from information_schema.tables " \
                  "where table_name in (" + str(single.get("tablelist")).split('[')[1].split(']')[0] + ")"
        else:
            sql = "select " \
                  "table_schema, " \
                  "table_name, " \
                  "table_comment, " \
                  "round(data_length/1024/1024, 2) as 'datasizeM', " \
                  "round(index_length/1024/1024, 2) as 'indexsizeM', " \
                  "table_rows as 'rows' " \
                  "from information_schema.tables " \
                  "where table_name like '"+single.get('selectkeystr')+"'"

        df = pd.read_sql(sql, conn)
        write_txt(filename_overview, " ".join([single.get("realtime"), single.get("key"), str(df['rows'].sum()), str(round(df['datasizeM'].sum(), 2)), str(round(df['indexsizeM'].sum(), 2))]))

        dataSum.append(df['rows'].sum())
        datasizeSum.append(round(df['datasizeM'].sum(), 2))
        datasizeSum.append(round(df['indexsizeM'].sum(), 2))
        if single.get("realtime") == "实时":
            dataRealtimeSum.append(df['rows'].sum())
            datasizeRealtimeSum.append(round(df['datasizeM'].sum(), 2))
            datasizeRealtimeSum.append(round(df['indexsizeM'].sum(), 2))
        else:
            dataJingtaiSum.append(df['rows'].sum())
            datasizeJingtaiSum.append(round(df['datasizeM'].sum(), 2))
            datasizeJingtaiSum.append(round(df['indexsizeM'].sum(), 2))

    write_txt(filename_overview, '-' * 30)
    write_txt(filename_overview, " ".join(["数据量总计:", str(sum(dataSum)), "条"]))
    write_txt(filename_overview, " ".join(["实时数据量总计:", str(sum(dataRealtimeSum)), "条"]))
    write_txt(filename_overview, " ".join(["静态数据量总计:", str(sum(dataJingtaiSum)), "条"]))
    write_txt(filename_overview, " ".join(["数据量总计大小", str(sum(datasizeRealtimeSum) + sum(datasizeJingtaiSum)), "M"]))
    write_txt(filename_overview, " ".join(["实时数据量总计大小:", str(round(sum(datasizeRealtimeSum),2)), "M"]))
    write_txt(filename_overview, " ".join(["静态数据量总计大小:", str(round(sum(datasizeJingtaiSum),2)), "M"]))

    conn.close()


def write_txt(filename, line):
    with open(filename, 'a+', encoding='utf8') as fh:
        fh.write(line+"\n")


if __name__ == '__main__':
    t = time.localtime(time.time())
    ymdhms = [t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec]
    filename_overview = "backupdata/overview_" + '_'.join(str(s) for s in ymdhms) + ".txt"
    write_txt(filename_overview, "*"*51)
    write_txt(filename_overview, "***一次性统计所有对接数据的委办局,和其对应的数据(条数)***")
    write_txt(filename_overview, "*"*51)
    write_txt(filename_overview, "")
    main()
    print("successfull 结果在 ", filename_overview, "文件中")

注:

connInfo-format.json

为一个json文件,部分内容如下:

[
  {
    "key": "市场监管局-共享平台",
    "realtime": "实时",
    "selecttype": "table",
    "selectstr": "like",
    "dbschema": "statistics_data",
    "selectkeystr": "gxpt_%",
    "tablelist": ["gxpt_qiye","gxpt_geti"]
  },
...
]

 

 

后续Python获取MySQL的数据量,很多时候可以以这个文件为字典,获取必要的编码方式

代码比较烂

如有哪位大虾发现有待提升的部分,还请不吝赐教!

 

谢谢

 

上一篇:系统的讲解 - PHP 浮点数高精度运算


下一篇:输入一个小数,输出四舍五入的结果