1051. Pop Sequence (25)
Given a stack which can keep M numbers at most. Push N numbers in the order of 1, 2, 3, ..., N and pop randomly. You are supposed to tell if a given sequence of numbers is a possible pop sequence of the stack. For example, if M is 5 and N is 7, we can obtain 1, 2, 3, 4, 5, 6, 7 from the stack, but not 3, 2, 1, 7, 5, 6, 4.
Input Specification:
Each input file contains one test case. For each case, the first line contains 3 numbers (all no more than 1000): M (the maximum capacity of the stack), N (the length of push sequence), and K (the number of pop sequences to be checked). Then K lines follow, each contains a pop sequence of N numbers. All the numbers in a line are separated by a space.
Output Specification:
For each pop sequence, print in one line "YES" if it is indeed a possible pop sequence of the stack, or "NO" if not.
Sample Input:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
Sample Output:
YES
NO
NO
YES
NO
题目描述:
一列数, 只能以1, 2, …., N的push 到stack里面, 但是可以再任意时刻pop出一个数字, 问给定一个序列, 是不是一个可行的按照这样的规则可以出现的一个pop序列.
算法分析:
思路:总结规律,使用hash
使用hash记录已经弹出栈的数字
从前向后扫,两种情况下是不可能的
1、比如当前扫到了7,查看1~6是否已经弹出,若没有弹出的数量count<M(栈的容量),则说明不可能。
2、比如当前扫到了7,而前一个是4,就要检测5和6是否弹出,如果有一个没弹出,则不可能
注意点:
无
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream> using namespace std; int hashs[];
int M, N, K; int getScale(int x){
int cnt = ;
for (int i=; i<=x; i++) {
if (hashs[i] == )
cnt++;
}
return cnt;
}
bool ckinv(int x,int y){
for (int i=y+; i<x; i++){
if (hashs[i] == )
return false;
}
return true;
} int main()
{
scanf("%d%d%d", &M, &N, &K);
for (int i=; i<K; i++) {
memset(hashs, , sizeof(hashs));
int a[N+];
for (int j=; j<=N;j++) {
scanf("%d", a+j);
}
int pre;
bool flag = true;
for (int j=; j<=N; j++) {
int tmp = a[j];
if (getScale(tmp) > M) {
printf("NO\n");
flag = false;
break;
}
if (j!= && ckinv(pre, tmp)== false) {
printf("NO\n");
flag = false;
break;
}
hashs[tmp] = ;
pre = tmp;
}
if (flag == true) printf("YES\n");
}
return ;
}