CGAN的基本理论和代码

CGAN的需求点:

GAN可以生成类似于真实的图片,但是它的生成的图片是不可控制的,那么当我们需要指定模型生成
特定的图片时,那么需要怎么做呢?
这时就出现了CGAN(Conditional Generative Adversarial Network)

1.CGAN原理的分析

1.1GAN原理的简单回顾

GAN包括两个模型Generator和Discriminator:G负责拟合寻找训练样本的数据分布,而D则负责鉴别数据是来自训练样本,还是由G模仿训练样本生成的数据。在实现这两个模型时,都是采用神经网络来做表达式,因为神经网络有更强的表达能力,能够有效的捕获到数据的分布特征。

为了学习到训练样本的数据分布,G建立了从一串固定长度的潜在噪声数据 P z ( z ) P_z(z) Pz​(z)到 G ( z ; Θ g ) G(z;\Theta_g) G(z;Θg​)的映射关系,这里的 Θ g \Theta_g Θg​实际就是通过神经网络来表达的。为什么可以由噪声数据最后通过生成器G可以生成类似的真实图,这就依赖于神经网络的强大的拟合能力。

而鉴别器 D ( x , Θ d ) D(x,\Theta_d) D(x,Θd​)的则是用来督促G中 Θ g \Theta_g Θg​向着真实数据的分布去拟合。

但是这样G最后生成的数据是不可控制的,只是比较和训练样本中的数据类似而已,而不能指定生成什么的数据。

1.2CGAN的提出

CGAN是在GAN的基础上进行改进的,其目的就是能指定生成什么样的数据。通过给原始的GAN生成器G和判别器D添加额外的条件信息,实现条件生成模型。原论文中说的额外信息可以是类别标签或者是其他的辅助信息。最直接的就是使用类别 标签信息y

CGAN的核心就是将条件信息加入到了G和D中。:

  1. 原始的GAN生成器的输入信息是一固定长度的噪声信息,那么CGAN中则是将噪声信息结合标签信息组合起来

    作为输入,标签信息一般是采用one-hot编码构成。

  2. 原始的GAN判别器输入是图像数据(真实的训练样本和生成器生成的数据),那么在CGAN中则是将类别标签和图像数据进行组合作为判别器的输入。

其组合形式如下图:

CGAN的基本理论和代码

2.CGAN的pytorch代码实现

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images02", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)

cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim + opt.n_classes, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, noise, labels):
        # Concatenate label embedding and image to produce input
        gen_input = torch.cat((self.label_emb(labels), noise), -1)
        img = self.model(gen_input)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)

        self.model = nn.Sequential(
            nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 1),
        )

    def forward(self, img, labels):
        # Concatenate label embedding and image to produce input
        d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1)
        validity = self.model(d_in)
        return validity


# Loss functions
adversarial_loss = torch.nn.MSELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("data/", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "data/",
        train=True,
        download=False,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor


def sample_image(n_row, batches_done):
    """Saves a grid of generated digits ranging from 0 to n_classes"""
    # Sample noise
    z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
    # Get labels ranging from 0 to n_classes for n rows
    labels = np.array([num for _ in range(n_row) for num in range(n_row)])
    labels = Variable(LongTensor(labels))
    gen_imgs = generator(z, labels)
    save_image(gen_imgs.data, "images02/%d.png" % batches_done, nrow=n_row, normalize=True)


# ----------
#  Training
# ----------

for epoch in range(opt.n_epochs):
    for i, (imgs, labels) in enumerate(dataloader):

        batch_size = imgs.shape[0]

        # Adversarial ground truths
        valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
        fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)

        # Configure input
        real_imgs = Variable(imgs.type(FloatTensor))
        labels = Variable(labels.type(LongTensor))

        # -----------------
        #  Train Generator
        # -----------------

        optimizer_G.zero_grad()

        # Sample noise and labels as generator input
        z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
        gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))

        # Generate a batch of images
        gen_imgs = generator(z, gen_labels)

        # Loss measures generator's ability to fool the discriminator
        validity = discriminator(gen_imgs, gen_labels)
        g_loss = adversarial_loss(validity, valid)

        g_loss.backward()
        optimizer_G.step()

        # ---------------------
        #  Train Discriminator
        # ---------------------

        optimizer_D.zero_grad()

        # Loss for real images
        validity_real = discriminator(real_imgs, labels)
        d_real_loss = adversarial_loss(validity_real, valid)

        # Loss for fake images
        validity_fake = discriminator(gen_imgs.detach(), gen_labels)
        d_fake_loss = adversarial_loss(validity_fake, fake)

        # Total discriminator loss
        d_loss = (d_real_loss + d_fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            sample_image(n_row=10, batches_done=batches_done)


CGAN的基本理论和代码

上一篇:docker stack部署prometheus + grafana


下一篇:Python机器学习算法之KNN算法