一、TensorFlow-word2vec
连续词袋模型(CBOW):根据词的上下文词汇来预测目标词汇,例如上下文词汇是“今天早餐吃__”,要预测的目标词汇可能
是“面包“;
Skip-Gram模型:Skip-Gram模型刚好和CBOW相反,它是通过目标词汇来预测上下文词汇。例如目标词汇是“早餐”
,上下文词汇可能是“今天”和“吃面包”:
Word2vec模型
训练Word2vec模型我们通常可以选择使用噪声对比估计(Noise Contrastive Estimation):NCE使用的方法是把上下文h对应地正确的目标词汇标记为正样本(D=1),然后再抽取一些错误的词汇作为负样本(D=0)。然后最大化目标函数的值:
当真实的目标单词被分配到较高的概率,同时噪声单词的概率很低时,目标函数也就达到最大值了。计算这个函数时,只需要计算挑选出来的k个噪声单词,而不是整个语料库。所以训练速度会很快。
Word2Vec图形化:
案例代码:
# encoding=utf8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Step 1: Download the data.
url = 'http://mattmahoney.net/dc/'
# 下载数据集
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
# 获取文件相关属性
statinfo = os.stat(filename)
# 比对文件的大小是否正确
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words"""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
# 单词表
words = read_data(filename)
# Data size
print('Data size', len(words))
# Step 2: Build the dictionary and replace rare words with UNK token.
# 只留50000个单词,其他的词都归为UNK
vocabulary_size = 50000
def build_dataset(words, vocabulary_size):
count = [['UNK', -1]]
# extend追加一个列表
# Counter用来统计每个词出现的次数
# most_common返回一个TopN列表,只留50000个单词包括UNK
# c = Counter('abracadabra')
# c.most_common()
# [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]
# c.most_common(3)
# [('a', 5), ('r', 2), ('b', 2)]
# 前50000个出现次数最多的词
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
# 生成 dictionary,词对应编号, word:id(0-49999)
# 词频越高编号越小
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
# data把数据集的词都编号
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
# 记录UNK词的数量
count[0][1] = unk_count
# 编号对应词的字典
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
# data 数据集,编号形式
# count 前50000个出现次数最多的词
# dictionary 词对应编号
# reverse_dictionary 编号对应词
data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)
del words # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
# [ skip_window target skip_window ]
# [ skip_window target skip_window ]
# [ skip_window target skip_window ]
# [0 1 2 3 4 5 6 7 8 9 ...]
# t i
# 循环3次
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# 获取batch和labels
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
# 循环2次,一个目标单词对应两个上下文单词
for j in range(num_skips):
while target in targets_to_avoid:
# 可能先拿到前面的单词也可能先拿到后面的单词
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# Backtrack a little bit to avoid skipping words in the end of a batch
# 回溯3个词。因为执行完一个batch的操作之后,data_index会往右多偏移span个位置
data_index = (data_index + len(data) - span) % len(data)
return batch, labels
# 打印sample data
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
# 词向量维度
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
# 从0-100抽取16个整数,无放回抽样
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
# 负采样样本数
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
# with tf.device('/cpu:0'):
# 词向量
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# embedding_lookup(params,ids)其实就是按照ids顺序返回params中的第ids行
# 比如说,ids=[1,7,4],就是返回params中第1,7,4行。返回结果为由params的1,7,4行组成的tensor
# 提取要训练的词
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the noise-contrastive estimation(NCE) loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
# 抽取一些常用词来测试余弦相似度
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
# valid_size == 16
# [16,1] * [1*50000] = [16,50000]
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 100001
final_embeddings = []
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
# 获取一个批次的target,以及对应的labels,都是编号形式的
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
# 计算训练2000次的平均loss
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 20000 == 0:
sim = similarity.eval()
# 计算验证集的余弦相似度最高的词
for i in xrange(valid_size):
# 根据id拿到对应单词
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
# 从大到小排序,排除自己本身,取前top_k个值
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
# 训练结束得到的词向量
final_embeddings = normalized_embeddings.eval()
# Step 6: Visualize the embeddings.
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
# 设置图片大小
plt.figure(figsize=(15, 15)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')# mac:method='exact'
# 画500个点
plot_only = 300
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")
二、TensorFlow-CNN解决文本分类:
CNN应用于NLP的任务,处理的往往是以矩阵形式表达的句子或文本。矩阵中的每一行对应于一个分词元素,一般是一个单词,也可以是一个字符。也就是说每一行都是一个词或者字符的向量(比如前面说到的word2vec)。假设我们一共有10个词,每个词都用128维的向量来表示,那么我们就可以得到一个10×128维的矩阵。
参考项目:https://github.com/dennybritz/cnn-text-classification-tf
三、TensorFlow在语音方面的应用案例
声谱图:语音被分为很多帧,每帧语音都对应于一个频谱(通过FFT计算得到),频谱表示频率与能量的关
系;
频谱图:先将一帧语音的频谱通过坐标表示出来,如左图。再将图旋转90度,如中间的图。然后把这些
幅度映射到一个灰度级表示;
spectrogram声谱图:
分离包络和频谱的细节:
Mel频率分析:人类听觉感知实验表明,人类的听觉的感知只聚焦在某些特定的区域,而不是整个频谱包络。Mel频率分析就是基于人类听觉感知实验的。人耳就像一个滤波器组,它只关注某些特定频率的分量,也就是说它只让某些频率的信号通过。并且在低频区域由很多的滤波器,分布比较密集,在高频区域,滤波器比较少,也比较稀疏。
人的听觉系统是一个特殊的非线性系统,它响应不同频率信号的灵明度是不同的。在语音特征的提取上,人类的听觉系统非常好,它不仅能提取出语义信息,而且能提取出说话人的个人特征。所以语音识别系统中能模拟人类听觉感知处理的特点,就有可能提高语音的识别率。MFCC考虑到了人类的听觉特征,将线性频谱映射到基于听觉感知的Mel非线性频谱中。
语音处理流程:
声音分类代码案例:
# coding: utf-8
# 数据集:https://serv.cusp.nyu.edu/projects/urbansounddataset/
#
# librosa:https://github.com/librosa/librosa
#
# 分类:
# 0 = air_conditioner
# 1 = car_horn
# 2 = children_playing
# 3 = dog_bark
# 4 = drilling
# 5 = engine_idling
# 6 = gun_shot
# 7 = jackhammer
# 8 = siren
# 9 = street_music
# In[1]:
import os
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import time
import librosa # pip install librosa
from tqdm import tqdm # pip install tqdm
import random
# Parameters
# ==================================================
# Data loading params
# validation数据集占比
tf.flags.DEFINE_float("dev_sample_percentage", .2, "Percentage of the training data to use for validation")
# 父目录
tf.flags.DEFINE_string("parent_dir", "audio/", "Data source for the data.")
# 子目录
tf.flags.DEFINE_string("tr_sub_dirs", ['fold1/','fold2/','fold3/'], "Data source for the data.")
# Model Hyperparameters
# 第一层输入,MFCC信号
tf.flags.DEFINE_integer("n_inputs", 40, "Number of MFCCs (default: 40)")
# cell个数
tf.flags.DEFINE_string("n_hidden", 300, "Number of cells (default: 300)")
# 分类数
tf.flags.DEFINE_integer("n_classes", 10, "Number of classes (default: 10)")
# 学习率
tf.flags.DEFINE_integer("lr", 0.005, "Learning rate (default: 0.005)")
# dropout参数
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
# Training parameters
# 批次大小
tf.flags.DEFINE_integer("batch_size", 50, "Batch Size (default: 50)")
# 迭代周期
tf.flags.DEFINE_integer("num_epochs", 100, "Number of training epochs (default: 100)")
# 多少step测试一次
tf.flags.DEFINE_integer("evaluate_every", 50, "Evaluate model on dev set after this many steps (default: 50)")
# 多少step保存一次模型
tf.flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 500)")
# 最多保存多少个模型
tf.flags.DEFINE_integer("num_checkpoints", 2, "Number of checkpoints to store (default: 2)")
# flags解析
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
# 打印所有参数
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
# 获得训练用的wav文件路径列表
def get_wav_files(parent_dir,sub_dirs):
wav_files = []
for l, sub_dir in enumerate(sub_dirs):
wav_path = os.path.join(parent_dir, sub_dir)
for (dirpath, dirnames, filenames) in os.walk(wav_path):
for filename in filenames:
if filename.endswith('.wav') or filename.endswith('.WAV'):
filename_path = os.sep.join([dirpath, filename])
wav_files.append(filename_path)
return wav_files
# 获取文件mfcc特征和对应标签
def extract_features(wav_files):
inputs = []
labels = []
for wav_file in tqdm(wav_files):
# 读入音频文件
audio,fs = librosa.load(wav_file)
# 获取音频mfcc特征
# [n_steps, n_inputs]
mfccs = np.transpose(librosa.feature.mfcc(y=audio, sr=fs, n_mfcc=FLAGS.n_inputs), [1,0])
inputs.append(mfccs.tolist())
#获取label
for wav_file in wav_files:
label = wav_file.split('/')[-1].split('-')[1]
labels.append(label)
return inputs, np.array(labels, dtype=np.int)
# 获得训练用的wav文件路径列表
wav_files = get_wav_files(FLAGS.parent_dir,FLAGS.tr_sub_dirs)
# 获取文件mfcc特征和对应标签
tr_features,tr_labels = extract_features(wav_files)
np.save('tr_features.npy',tr_features)
np.save('tr_labels.npy',tr_labels)
# tr_features=np.load('tr_features.npy')
# tr_labels=np.load('tr_labels.npy')
#(batch,step,input)
#(50,173,40)
# 计算最长的step
wav_max_len = max([len(feature) for feature in tr_features])
print("max_len:",wav_max_len)
# 填充0
tr_data = []
for mfccs in tr_features:
while len(mfccs) < wav_max_len: #只要小于wav_max_len就补n_inputs个0
mfccs.append([0] * FLAGS.n_inputs)
tr_data.append(mfccs)
tr_data = np.array(tr_data)
# In[6]:
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(tr_data)))
x_shuffled = tr_data[shuffle_indices]
y_shuffled = tr_labels[shuffle_indices]
# Split train/test set
# TODO: This is very crude, should use cross-validation
# 数据集切分为两部分
dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y_shuffled)))
train_x, test_x = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
train_y, test_y = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
# In[7]:
# placeholder
x = tf.placeholder("float", [None, wav_max_len, FLAGS.n_inputs])
y = tf.placeholder("float", [None])
dropout = tf.placeholder(tf.float32)
# learning rate
lr = tf.Variable(FLAGS.lr, dtype=tf.float32, trainable=False)
# 定义RNN网络
# 初始化权制和偏置
weights = tf.Variable(tf.truncated_normal([FLAGS.n_hidden, FLAGS.n_classes], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[FLAGS.n_classes]))
# 多层网络
num_layers = 3
def grucell():
cell = tf.contrib.rnn.GRUCell(FLAGS.n_hidden)
# cell = tf.contrib.rnn.LSTMCell(FLAGS.n_hidden)
cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
return cell
cell = tf.contrib.rnn.MultiRNNCell([grucell() for _ in range(num_layers)])
outputs,final_state = tf.nn.dynamic_rnn(cell,x,dtype=tf.float32)
# 预测值
prediction = tf.nn.softmax(tf.matmul(final_state[0],weights) + biases)
# labels转one_hot格式
one_hot_labels = tf.one_hot(indices=tf.cast(y, tf.int32), depth=FLAGS.n_classes)
# loss
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=one_hot_labels))
# optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cross_entropy)
# Evaluate model
correct_pred = tf.equal(tf.argmax(prediction,1), tf.argmax(one_hot_labels,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# In[8]:
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
# 每个epoch的num_batch
num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1
print("num_batches_per_epoch:",num_batches_per_epoch)
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
# Initializing the variables
init = tf.global_variables_initializer()
# 定义saver
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
# Generate batches
batches = batch_iter(list(zip(train_x, train_y)), FLAGS.batch_size, FLAGS.num_epochs)
for i,batch in enumerate(batches):
i = i + 1
x_batch, y_batch = zip(*batch)
sess.run([optimizer], feed_dict={x: x_batch, y: y_batch, dropout: FLAGS.dropout_keep_prob})
# 测试
if i % FLAGS.evaluate_every == 0:
sess.run(tf.assign(lr, FLAGS.lr * (0.99 ** (i // FLAGS.evaluate_every))))
learning_rate = sess.run(lr)
tr_acc, _loss = sess.run([accuracy, cross_entropy], feed_dict={x: train_x, y: train_y, dropout: 1.0})
ts_acc = sess.run(accuracy, feed_dict={x: test_x, y: test_y, dropout: 1.0})
print("Iter {}, loss {:.5f}, tr_acc {:.5f}, ts_acc {:.5f}, lr {:.5f}".format(i, _loss, tr_acc, ts_acc, learning_rate))
# 保存模型
if i % FLAGS.checkpoint_every == 0:
path = saver.save(sess, "sounds_models/model", global_step=i)