【deep learning学习笔记】注释yusugomori的LR代码 --- LogisticRegression.h

继续看yusugomori的代码,看逻辑回归。在DBN(Deep Blief Network)中,下面几层是RBM,最上层就是LR了。关于回归、二类回归、以及逻辑回归,资料就是前面转的几篇。套路就是设定目标函数(softmax损失函数),对参数求偏导数,得出权重更新公式等。

LogisticRegression.h注释如下:

class LogisticRegression
{
public:
int N; // number of input samples
int n_in; // number of input nodes
int n_out; // number of output nodes
double **W; // weights connecting the input nodes and the output nodes
double *b; // bias of the output nodes
// allocate memory and initialize the parameters
LogisticRegression(
int, // N
int, // n_in
int // n_out
);
~LogisticRegression(); public:
// train the logistic regression model, update the value of W and b
void train (
int*, // the input from input nodes in training set
int*, // the output from output nodes in training set
double // the learning rate
);
// calculate the softmax for a input vector
// dSoftMax = exp(d_i - Max) / sum_i( exp(d_i - Max) )
void softmax (
double* // the calculated softmax probabiltiy -- input & output
);
// do prediction by calculating the softmax probability from input
void predict (
int*, // the input from input nodes in testing set
double* // the calculated softmax probability
);
};

顺便提一句。从前RBM的那个注释,是在家用VS2008写的;现在这个,用CFree5.0,轻量级、编辑器操作贴心,赞一下!

上一篇:RocketMq消息队列使用


下一篇:java web Cookie浅谈