题解里面说得很清楚了。
大约就是单独考虑每个数的贡献,然后看一下每个序列里有多少区间是没有这个数的,乘起来就好了。
为了处理修改我们需要每个值建一棵线段树来搞,但是窝zz了,写了线段树套线段树,比正解多一个log。
一开始想着不调map、set,然后发现特别难写。最后还是调了map……
比赛的时候挂了0没有逆元的坑啊!
#include<map>
#include<cstdio>
#include<algorithm>
#define pii pair
#define mpii make_pair
#define MN 410000
using namespace std;
int read_p,read_ca,read_f;
inline int read(){
read_p=;read_ca=getchar();read_f=;
while(read_ca<''||read_ca>'') {if (read_ca=='-') read_f=-;read_ca=getchar();}
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p*read_f;
}
const int MOD=;
struct na{int p,*st;}Y[MN<<];
bool operator < (na a,na b){return a.p<b.p;}
inline void M(int &x){while(x>=MOD)x-=MOD;while(x<)x+=MOD;}
int n,m,L[MN],a[MN],ro[MN],RO[MN*],ls[MN*],rs[MN*],LS[MN*],RS[MN*],S[MN*],NUM,x[MN],y[MN],z[MN],T=,num=,_num=,mmh[MN],MMH=,t[MN],w[MN],ze[MN];
void ADD(int &p,int l,int r,int pos,int v){
if (!p) p=++_num;S[p]+=v;
if (l==r) return;
int mid=l+r>>;
if (pos<=mid) ADD(LS[p],l,mid,pos,v);else ADD(RS[p],mid+,r,pos,v);
}
void add(int &p,int l,int r,int pos,int x,int v){
if (!p) p=++num;ADD(RO[p],,T,x,v);
if (l==r) return;
int mid=l+r>>;
if (pos<=mid) add(ls[p],l,mid,pos,x,v);else add(rs[p],mid+,r,pos,x,v);
}
int ASK(int p,int l,int r,int k){
if (!p) return ;
if (l==r) return S[p];
int mid=l+r>>;
return k<=mid?ASK(LS[p],l,mid,k):ASK(RS[p],mid+,r,k);
}
int p_ask(int p,int l,int r,int pos,int x){
if (ASK(RO[p],,T,x)==) return -;
if (pos<=l) return -;
if (l==r) return l;
int mid=l+r>>;
int w=p_ask(rs[p],mid+,r,pos,x);
if (w!=-) return w;
return p_ask(ls[p],l,mid,pos,x);
}
int s_ask(int p,int l,int r,int pos,int x){
if (ASK(RO[p],,T,x)==) return -;
if (pos>=r) return -;
if (l==r) return l;
int mid=l+r>>;
int w=s_ask(ls[p],l,mid,pos,x);
if (w!=-) return w;
return s_ask(rs[p],mid+,r,pos,x);
}
inline int mi(int x,int y){
int mmh=;
while (y){
if (y&) mmh=1LL*mmh*x%MOD;
x=1LL*x*x%MOD;y>>=;
}
return mmh;
}
map<pii<int,int>,int> ma;
map<pii<int,int>,int>::iterator it;
inline void del(int x,int v){
if(!ze[v])M(MMH+=mmh[v]);
if (ma.find(mpii(x,v))==ma.end()) ma[mpii(x,v)]=1LL*(L[x]-L[x-])*(L[x]-L[x-]+)/%MOD;
if (!ma[mpii(x,v)]) ze[v]--;else mmh[v]=1LL*mmh[v]*mi(ma[mpii(x,v)],MOD-)%MOD;
}
inline void add(int x,int v){if (!ma[mpii(x,v)]) ze[v]++;else mmh[v]=1LL*mmh[v]*ma[mpii(x,v)]%MOD;if(!ze[v])M(MMH-=mmh[v]);}
int main(){
n=read();m=read();
for (int i=;i<=n;i++) L[i]=L[i-]+read();
for (int i=;i<=n;i++){
for (int j=L[i-];j<L[i];j++) Y[++NUM].p=a[j]=read(),Y[NUM].st=&a[j];
MMH=1LL*(L[i]-L[i-])*(L[i]-L[i-]+)/%MOD*MMH%MOD;
}
for (int i=;i<=m;i++) x[i]=read(),y[i]=read(),Y[++NUM].p=z[i]=read(),Y[NUM].st=&z[i];
sort(Y+,Y++NUM);
for (int i=;i<=NUM;i++) T+=i==||Y[i].p!=Y[i-].p,*Y[i].st=T;
for (int i=;i<=T;i++) mmh[i]=MMH,ze[i]=;
MMH=1LL*MMH*T%MOD;
for (int i=;i<=n;i++)
for (int j=L[i-];j<L[i];j++)add(ro[i],,L[i]-L[i-],j-L[i-]+,a[j],); for (int i=;i<=n;i++){
for (int j=L[i-];j<L[i];j++)
if (!t[a[j]]) w[j]=(1LL*(j-L[i-]+)*(j-L[i-])>>)%MOD,t[a[j]]=j+;else w[j]=((1LL*(j+-t[a[j]])*(j-t[a[j]])>>)+w[t[a[j]]-])%MOD,t[a[j]]=j+; int s=mi(1LL*(L[i]-L[i-])*(L[i]-L[i-]+)/%MOD,MOD-);
for (int j=L[i]-;j>=L[i-];j--) if (t[a[j]]){
M(w[j]+=1LL*(L[i]-t[a[j]]+)*(L[i]-t[a[j]])/%MOD);
mmh[a[j]]=1LL*mmh[a[j]]*s%MOD;
if (!w[j]) ze[a[j]]++;else mmh[a[j]]=1LL*mmh[a[j]]*w[j]%MOD;
ma[mpii(i,a[j])]=w[j];
t[a[j]]=;
}
} for (int i=;i<=T;i++) if (!ze[i]) M(MMH-=mmh[i]);
printf("%d\n",MMH);
for (int i=;i<=m;i++){
int pos=L[x[i]-]+y[i]-;
del(x[i],a[pos]);del(x[i],z[i]); int l=p_ask(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],a[pos]),r=s_ask(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],a[pos]);
if (l==-) l=;if (r==-) r=L[x[i]]-L[x[i]-]+;
it=ma.find(mpii(x[i],a[pos]));
M(it->second+=1LL*(r-y[i])*(y[i]-l)%MOD); l=p_ask(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],z[i]),r=s_ask(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],z[i]);
if (l==-) l=;if (r==-) r=L[x[i]]-L[x[i]-]+;
it=ma.find(mpii(x[i],z[i]));
M(it->second-=1LL*(r-y[i])*(y[i]-l)%MOD); add(x[i],a[pos]);add(x[i],z[i]); add(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],a[pos],-);
add(ro[x[i]],,L[x[i]]-L[x[i]-],y[i],z[i],);a[pos]=z[i];
printf("%d\n",MMH);
}
}