Description
*有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
Input
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
Output
可能越狱的状态数,模100003取余
Sample Input
2 3
Sample Output
6
HINT
6种状态为(000)(001)(011)(100)(110)(111)
Source
Solution
答案 = 总可能数 - 不越狱的可能数
= $m^{n}-m*(m-1)^{n-1}$
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = ; ll qpow(ll a, ll b)
{
ll ans = ;
for(a %= MOD; b; b >>= , a = a * a % MOD)
if(b & ) ans = ans * a % MOD;
return ans;
} int main()
{
ll m, n, ans;
cin >> m >> n;
ans = (-m * qpow(m - , n - ) % MOD + MOD) % MOD;
cout << (qpow(m, n) + ans) % MOD << endl;
return ;
}