最大公约数(GCD)与最小公倍数(LCM)的计算

  给出两个数a、b,求最大公约数(GCD)与最小公倍数(LCM)

一、最大公约数(GCD)

    最大公约数的递归:

 * 1、若a可以整除b,则最大公约数是b
 * 2、如果1不成立,最大公约数便是b与a%b的最大公约数
 * 示例:求(140,21)
 * 140%21 = 14
 * 21%14 = 7
 * 14%7 = 0
 * 返回7
  代码如下,非常简单,一行就够了:
 int GCD(int a,int b)
{
return a%b?GCD(b,a%b):b;
}

 二、最小公倍数(LCM)

  求出最大公约数后m后,最小公倍数就是a*b/m了,很简单。这里做一个扩展,求1~n共n个数的最小公倍数

思路:

两个数的情况:
设两个数分别为a,b
先用辗转相除法求gcd(a,b),也就是a,b的最大公约数
然后lcm(a,b)=a*b/gcd(a,b)
n个数的情况:
设n个数分别为a1,a2,……an
则先求b1=lcm(a1,a2)
再求b2=lcm(b1,a3)
b3=lcm(b2,a4)
b4=lcm(b3,a5)
……
最后求到b[n-1]就是答案
复杂度接近O(n)

代码如下:

 #include <iostream>
using namespace std;
int GCD(int a,int b)
{
return a%b?gcd(b,a%b):b;
}
int main()
{ int i,n,m,temp=,ans=;
cin >> n;
   for (i=; i<=n; i++)
   {
  temp=GCD(ans,i);
  ans=ans*i /temp;
   }
  cout << ans << '\n'; return ;
}
上一篇:js excel导出 前端实现(转载)


下一篇:GCC online documentation