1.源码
function (x, y, wt = NULL, intercept = TRUE, tolerance = 1e-,
yname = NULL)
{
x <- as.matrix(x)
y <- as.matrix(y)
xnames <- colnames(x)#x的列名
if (is.null(xnames)) {
if (ncol(x) == 1L) #赋予列名
xnames <- "X"
else xnames <- paste0("X", 1L:ncol(x))
}
if (intercept) {#如果有截距的话,那么就多赋值一个列。
x <- cbind(, x)#按列合并,那么行数一样,即每行为一个样本
xnames <- c("Intercept", xnames)
}
if (is.null(yname) && ncol(y) > )
yname <- paste0("Y", 1L:ncol(y))
good <- complete.cases(x, y, wt)#去除NA值。这里暗示了x y行数是一样的?
dimy <- dim(as.matrix(y))
if (any(!good)) {#如果至少有一个是false
warning(sprintf(ngettext(sum(!good), "%d missing value deleted",
"%d missing values deleted"), sum(!good)), domain = NA)
x <- as.matrix(x)[good, , drop = FALSE]
y <- as.matrix(y)[good, , drop = FALSE]
wt <- wt[good]
}
nrx <- NROW(x)
ncx <- NCOL(x)
nry <- NROW(y)
ncy <- NCOL(y)
nwts <- length(wt)
if (nry != nrx) #如果x的样本数与y的样本数不相等
stop(sprintf(paste0(ngettext(nrx, "'X' matrix has %d case (row)",
"'X' matrix has %d cases (rows)"), ", ", ngettext(nry,
"'Y' has %d case (row)", "'Y' has %d cases (rows)")),
nrx, nry), domain = NA)
if (nry < ncx)
stop(sprintf(paste0(ngettext(nry, "only %d case", "only %d cases"),
", ", ngettext(ncx, "but %d variable", "but %d variables")),
nry, ncx), domain = NA)
if (!is.null(wt)) {#用于加权最小二乘
if (any(wt < ))
stop("negative weights not allowed")
if (nwts != nry)
stop(gettextf("number of weights = %d should equal %d (number of responses)",
nwts, nry), domain = NA)
wtmult <- sqrt(wt)
if (any(wt == )) {
xzero <- as.matrix(x)[wt == , ]
yzero <- as.matrix(y)[wt == , ]
}
x <- x * wtmult
y <- y * wtmult
invmult <- /ifelse(wt == , , wtmult)
}
z <- .Call(C_Cdqrls, x, y, tolerance, FALSE)#调用C中的函数
resids <- array(NA, dim = dimy)
dim(z$residuals) <- c(nry, ncy)
if (!is.null(wt)) {
if (any(wt == )) {
if (ncx == 1L)
fitted.zeros <- xzero * z$coefficients
else fitted.zeros <- xzero %*% z$coefficients
z$residuals[wt == , ] <- yzero - fitted.zeros
}
z$residuals <- z$residuals * invmult
}
resids[good, ] <- z$residuals#所有不含NA的行的残差被赋值为计算所得的残差
if (dimy[2L] == && is.null(yname)) {#如果y只有一列
resids <- drop(resids)#此时会变成一个向量
names(z$coefficients) <- xnames#系数被赋值为x的列名,
#因为一列正好对应的是一个变量,行对应的是样本数
}
else {
colnames(resids) <- yname
colnames(z$effects) <- yname
dim(z$coefficients) <- c(ncx, ncy)#是5行,100列,正好就是系数矩阵H
dimnames(z$coefficients) <- list(xnames, yname)#确实是对应,
#行是细胞类型的名字,列是基因名字。
}
z$qr <- as.matrix(z$qr)
colnames(z$qr) <- xnames
output <- list(coefficients = z$coefficients, residuals = resids)
#输出中有系数和残差
if (z$rank != ncx) {
xnames <- xnames[z$pivot]
dimnames(z$qr) <- list(NULL, xnames)
warning("'X' matrix was collinear")
}
if (!is.null(wt)) {
weights <- rep.int(NA, dimy[1L])
weights[good] <- wt
output <- c(output, list(wt = weights))
}
rqr <- list(qt = drop(z$effects), qr = z$qr, qraux = z$qraux,
rank = z$rank, pivot = z$pivot, tol = z$tol)
oldClass(rqr) <- "qr"
output <- c(output, list(intercept = intercept, qr = rqr))
#这里intercept只是一个布尔值???
return(output)
}
//感觉很坑啊,计算的部分是使用了
z <- .Call(C_Cdqrls, x, y, tolerance, FALSE)#调用C中的函数
> stats:::C_Cdqrls
$`name`
[] "Cdqrls" $address
<pointer: 0x00000000025f96b0>
attr(,"class")
[] "RegisteredNativeSymbol" $dll
DLL name: stats
Filename: D:/RRsetup/R-3.5./library/stats/libs/x64/stats.dll
Dynamic lookup: FALSE $numParameters
[] attr(,"class")
[] "CallRoutine" "NativeSymbolInfo"
这个就进行了最小二乘,具体的过程还是看不到....
//那似乎这个lsfit函数除了调用C函数计算之外,似乎也没什么了,就是去掉NA值,并且对结果进行整理,赋值列名行名之类的。
2.其中一些函数学习
2.1 paste0函数
> xy<-paste0("X",:)
> xy
[] "X1" "X2" "X3" "X4" "X5"
就是对其进行粘贴,形成一个字符串向量。
2.2 complete.cases函数——去除空值
转自:http://blog.sina.com.cn/s/blog_59990a450101qnvy.html
Value返回值为 A logical vector specifying which observations/rows have no missing values across the entire sequence.
一个逻辑向量,指明哪一行有缺失值NA
下面用实例来说明这两个函数的作用:
这是一个数据框final:
gene hsap mmul mmus rnor cfam
1 ENSG00000208234 0 NA NA NA NA
2 ENSG00000199674 0 2 2 2 2
3 ENSG00000221622 0 NA NA NA NA
4 ENSG00000207604 0 NA NA 1 2
5 ENSG00000207431 0 NA NA NA NA
6 ENSG00000221312 0 1 2 3 2
如果要去除有NA的行,则可用:
final[complete.cases(final),]
也可用 na.omit(final)
//对行进行检测,没有NA的行返回的是true,那么自然被保存。
上述运行结果如下:
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
如果想过滤部分列:
final[complete.cases(final[,:]),]
即只对5、6列进行判断。
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
这样第四行含有空值,但是,我们的命令是只过滤掉第5列,第6列中含有NA的行。
2.3 any函数
The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values in x are FALSE
//即如果有一个值为真,那么则返回真;如果全部为假,那么则返回假。
> range(x <- sort(round(stats::rnorm() - 1.2, )))
[] -2.6 0.5
> if(any(x < )) cat("x contains negative values\n")
x contains negative values
#
2.4 range函数
取向量中最大值与最小值。
> (r.x <- range(stats::rnorm()))
[] -1.805257 3.410545 #产生100个服从正态分布的数,使用range函数取最值。
2.5 rnorm函数
rnorm(n, mean = , sd = ) 产生n个符合生态分布的数,缺省的均值是0,标准差是1
2.6 ngettext函数
> for(n in :)
+ print(sprintf(ngettext(n, "%d variable has missing values",
+ "%d variables have missing values"),
+ n))
[] "0 variables have missing values"
[] "1 variable has missing values"
[] "2 variables have missing values"
[] "3 variables have missing values"
//我认为是和C语言中的printf是比较像的,就是将其中的数进行匹配即可。
2.7 stop函数
> iter <-
> try(if(iter > ) stop("too many iterations"))
Error in try(if (iter > ) stop("too many iterations")) :
too many iterations #能够终止函数的执行
2.8 drop函数
对于多维数据,去掉长度为1的维度。
> dim(drop(array(:, dim = c(,,,,,,))))
[]
上例中,即去掉第一维、第三四维、第六维这四个维度,那么还剩下的是这些。
> x<-drop(array(:, dim = c(,,,,,,)))
> x
, , [,] [,]
[,]
[,]
[,] , , [,] [,]
[,]
[,]
[,]
dim是给数组赋予维数:
> z<-c(:)
> dim(z)<-c(,)
> z
[,] [,] [,]
[,]
[,]
> z<-c(:)
> dim(z)<-c(,)
> z
[,] [,] [,] [,] [,] [,]
[,]
> drop(z)
[]
> z<-c(:)
> dim(z)<-c(,)
> z
[,]
[,]
[,]
[,]
[,]
[,]
[,]
> drop(z)
[] #试验如果维度有一个为1的话,那么会是什么情况
那么似乎是去掉那个为1的维度,然后其他正常,此时
> z<-drop(z)
> dim(z)
NULL