mysql关于排序值的问题,指定排序值

SELECT a.* FROM `catalog_eav_attribute` ea JOIN `eav_attribute` a ON ea.`attribute_id`=a.`attribute_id`
WHERE a.`entity_type_id`=4 AND ea.`is_global`=1 AND frontend_input='select' ORDER BY FIELD(a.attribute_id,93,141,147) DESC;

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA90AAAJ2CAIAAADNAHZIAAAgAElEQVR4nO3dS9B021kX8D4BY1QUkEtUFFCicpeLgQQIlgOsI1KFGIEQLlE5QoDI4QAGxQtGwv3mBbWiTigdZBAHFk4caG1nOnPgACeox6CGBA4HEQign4P+Tn/73de1Vu/dz1q7f79aRfXZ3+q1n7X7Df1/n6+/3acXX3jeMAzDMAzDMIzA8dyzz5xefOH5RwAAQJB3vfMdT3L5f/qP/94wDMMwDMMwjNuPYS5/33t+yjAMwzAMwzCMW47pXH76s/997/HUly6Pdz8eX/bup77s3S9LGV/+7pd9+bs/IGW84d0f8Iaf+YA3/MwHro6veDJ+0/J444Px8jf+j9nxlcPxm+fGVw3HK56M//lgfPXE+C3j8TWz47cOxpv+18L4bf3x51bGB13Gnx+M9wzGb7+Mv7A+fsd5fO3C+NnL+OCv/dkPfiZ1fMhfTBtf994P+br3fmjK+Pr3fujXv/d3pow3Px4f9ub3ftib37c0vuHJ+PDl8Y0Pxkc8GT83HN/0YHzkwnjLcLxyYvz8K9/y86/8SxPjd43HN8+O3z0Yz17GC+Pxe/rjW5bGR/XHcwvjFz7quV/4vZfxrevj953HtyWNj/62Fz/621PHx/zltPHWFz/2yfjFpfEdv/ix3/GLvz9l/JXH4w8Mx/8ejr/6ZHzc8vjOJ+NVs+OXXvWdv/Sqv/Zg/MGF8deH4w/Njb9xGf/nMv7w5Pib0+PjB+O75sYvf/x3/fIn9MffWhqfOBhvWxqf9LZf/qS3/crj8bdXxiefx3cnjU/57l/5lLefx68uj099+69+6vekjj/yvePx/unxfe//tMTx/e//tO9//6fPjl97PH7gyfiM5fGDT8ZnLo8f+rXP/KFfv4w/ujB+eDhePTd+ZDB+49U/8hufNTl+dGJ89nj82Ox4zY/9xmt+7P8+GH9ndrx2MP7u0vicJ+P/fc7fWxmfexl/f2V83nn8eH88mhuv+/FHr/sH7Q25XC6Xy+VyuVwul8vlcrlcLpfL44dcLpfL5XK5XC6Xy+VyuVwul99LLs/y3LPP5M4vO4tcLpfL5XK5XC6Xy+VyuVwul99dLk+8WeE5H+fOLzuLXC6Xy+VyuVwul8vlcrlcLpffYy5P+SeY/VyePr/sLJm5/PX/7anX//RTr/8va+OnT6//r3K5XC6Xy+VyuVwul8vlcrlcLpfvkstf8YXv/MQ3/+tP+YZ/+8lv/jfj8elv6T7tm7rP+OZ/91nf8JMf8kU/8dQX/YfVUH7+PE1KLj/PXIjjlwnjz+uk5PLzzEEcf3LwK37mA7/i8X/K5XK5XC6Xy+VyuVwul8vlcnlwLv/Qb/vPr/zhX3jlD/7ceHzkD/zcV/7kr33xv/j1N/3kr/7DH/1nr/2qnzh91g+mhPK1aP4gly9E80EuPyfvyVy+/KH7cS5fIJfL5XK5XC6Xy+VyuVwul99JLj8tunUu/2Pf+s8//Y3f8plf/dbJ8do3vfU1b3rra9/01j/+NW/5xD/99g989XethvLz51gWo/mTUP7Ul013zVfTc9nnWB6E9Zea5etd84pzeX9HcrlcLpfL5XK5XC6Xy+Vy+c1yeX/O+EhJLv/cL/z65YIuPvwTvuQVr/2e1VB++Xz5fDR/EsqfetgXL+6Xz+Xyx8l76mMtl1B+/nz5UjSvOJf303nlufxcpFwul8vlcrlcLpfL5XJ5Vbl8blpiLr9MW0jzqbn8NX/yzafT6emnnz7Hpqeffvqy6KNHj/q5/MM+/kte8ZqJXL7a2x6k85eOPIjjk9F8kMv70j/EMojjg0Se9ClzuVwul8vlcrlcLpfL5XK5XC4fnWWuxV6Yy1/9J545R/Cnn376nM4viXwQ0+dyefr9WHox/fH9WMbRvJ/OnxzJuR/LOIhHfb58vPg5lM+d+pzLhwdfyuKD4xvm8sua/cfnXD4u8hLK+wf7ofzh8fd80EuJvK8sl4/XkcvlcrlcLpfL5XK5XC4PzOWDaH7t58svuXyc9y8xfTWXjwNT39znWMayPmL+aKprfsnlZ3OhfHCfxPPB1X75ZA3L/fLx/H40P3fKz4/7ofzcKX/8uBfK+48Lcvlk/f1ofu6Xnx9f+uWXmf1O+fnIuVn++HEvlPfjeEG/fLLOfjQ/d8rPj+VyuVwul8vlcrlcLpfLD5LLz59jeTTVLx+0zFdz+fh+LJcHy/cvP0+bC+WX+5ef/3OuU/74T3v98suDiX/0+fDTLOfHe3yOZZwvL59jeXCw9zmWy8H+51geH7kuly98juW8wkIuH3yC5Xxwp1y+8DmW8yJyuVwul8vlcrlcLpfL5TXk8o0/x7Lw+fJBy3ynXH6ek3v/8keTzfLR51j6j8f3L3/8uLJc/qBZLpfL5XK5XC6Xy+VyuVwul2fm8oW4vGEuHyw++M/yXJ4i93Msy7m8PzPre4VmO+Uzny+f/c+b/LvP8WXp/7vPx0d6/+7zfGSnz7HI5XK5XC6Xy+VyuVwul8vl9d4n8fP+1Dcm5vKP+IQ/84rXvj29X36x0C8/T1jO5QNLobyyXD5Z/6NzNF/M5Rf9+7EM/mh8//LHx0vvxzJeavzvPsfR/Gz5331e7l9+OX5lLr/w7z7lcrlcLpfL5XK5XC4/zvd9fuoXf9/HvvpLP+41b1wer3rNGz7m87/95Z/9tpT7sZwz0+r3fS5/jqUfvy73YxnEsrne+aO1+7H0c/nlKTe+T+L5pAX3STw/8T6/7/MSx90nUS6Xy+VyuVwul8vl8qPl8pd9wb98+ef/45e/7p+ujX/y8tf9o5d9wb+65j6Jc//uc33k3Cdx4fs+H4xev3w2ke+Ty/u/WuTm8v5z7y2XDzrlcrlcLpfL5XK5XC6Xy+WHyuV7DLn8xt8rdCe53PcKyeVyuVwul8vlcrlcLpfL5XK5XC6Xy+VyuVwul8vlcrlcLpfL5XK5XC6Xy+VyuVwul8vlcvliLn/XO9+ROM65PGt+2VnkcrlcLpfL5XK5XC6Xy+Vyufy+cvlzzz6z6yg7i1wul8vlcrlcLpfL5XK5XC6X31cur3nI5XK5XC6Xy+VyuVwul8vlcrlcHj9mc7lhGIZhGIZhGLcc07k8/bPqhmEYhmEYhmFcMx49mu+Xnw8ZhmEYhmEYhrHrOIfwlVx+AgAAkr34wvNZQy4HAIDtnRN1onPklssBAGBjl5CdMuRyAADYxe65vOu6ruv2KL3ryX3WHvVsq2Bfe5Wydt7Kr2f3UNazdiwLAOChVnN5f9lD5q1WNlX59RyUl15t5fsCAI6n1Vze10qEzZJYZ9lfGmyo8us5/v1NLgcA6jSXy0+n073n8tjI28ovG5Xn10t5ua9m5fsCAI5nMpdf/rT2f/e5X24e91k3P8WG6q8wSj+Xn1woAKBi41w+mHCn/fLwAKdfvolBm1y/HACo1iCXT86RywPI5ZsY/I2KXA4AVKvVf/dZFrbSJxevvxW5fBOD8uRyAKBareby0+gjClnP2m/9rWT9/hBYav35tez61L8vAOBgfN8nAADEk8sBACCeXA4AAPFefOH5d73zHelDLgcAgO099+wzuUMuBwCAjZ0Tdtb/lcsBAGBjuaH8fe/5KbkcAAA2tnu//Ab3gd71vtT13xe8ifush8stspV9AQCHsXu/fO98c4Pvi6k5l/en1VxnrFZedADgnrXdL7/N9zjWnHfl8mXFf5lQ+b4AgONpuF9+WXmnXN49VFZksVaiZBP5tZWLCQDcs1bvx7J3nzi8D52riSKjuDgAQP1a7Zd3U9KfmDWt/j50YO5sIvLqlwMA9Wv78+UFpzheLo9NkE3kV7kcAKhfq/3yvnvO5a3UGUsuBwDq13y/vOtJn5+1ctaztpKVy3MvwoYqz6/F16fyfQEAx+P7PgEAIF6r92MBAIAj0S8HAIB4+uUAABBPvxwAAOLplwMAQDz9cgAAiNfq/csPf1/qgvush+yr/ut57J8TAOAwWv2+z+JlW8lbiXX2p/leobFBebm/7exTFADAhLb75bd84o0V1CmXj41/b5HLAYA66ZevzIzKZ3L5Ji7l5b6ale8LADieVu/H0j200/rjx3UK/P2hcv1cfmrhpQQA7lar/fK+rFMkTu5GriiwhH75JgavoH45AFCtVj9f3rdfLr+iqGvJ5ZsY/FollwMA1Wq1X14WttInF6+/lYPVGWVQnlwOAFSr4X5515P7rP3W38rx6ozSPZT1rB3LAgB4yPd9AgBAvFbvxwIAAEeiXw4AAPH0ywEAIJ5+OQAAxNMvBwCAePrlAAAQr+H7l59G3+aY/pT91t9K4nm7kd0rmyrgxifN4v7lAEATWv2+z+KVc7+vp/hEV8rK5btXU3EBywblFbz6AAC30Wq/vHjZVpKZXL6JfnlZLfPK9wUAHE+r/XK5PGvafsILWDb4S49WXn0A4A61ej+W7qHm1t9KK3VG6efyk7QNAFTsCP3yrFO00jE*wZUn3cEvLa28+gDAHTrC58vl8uKnXK/y/Dr4m4RWXn0A4A7pl28wcw+JZy++DlupPL8Oymvl1QcA7lCr/fLT6CMKWc/aafEN5SbIqFLrz6/dQ1nP2rEsAICHfN8nAADEa/V+LAAAcCT65QAAEE+/HAAA4umXAwBAPP1yAACIp18OAADxqrt/+dzk8fFj35fa/cu3sut97gEAtlLX933OTR4fHxzJTbGJ9QRKrLM/LWRrlV/P4utT+b4AgOOppV8+19RcPj6Yk7LhVvKWXL45uRwAqFnz/fK54J57iuVpg9OlHy9WsIJcvkwuBwBqVtf9WMpy+cITr1GcxeXj2mT95gYAEKLtfnlBFC6oZzw/93iBTa7bDTSUd1u5pADAfarl8+XLkxdyee5ZjpfLYxNkQ/lVLgcAatZ2v7zgLAUz586VeLxM4iL9aSFRsvL8Wnx9Kt8XAHA8tfTLu5Hl4+M/StxwQd49XZHRi1153W6m/vxadnHq3xcAcDC+7xMAAOLVdT8WAAC4T/rlAAAQT78cAADi6ZcDAEA8/XIAAIinXw4AAPH0ywEAIN6LLzyfNZ579hm5HAAANnZO1InOkXuX7/u8mdrqmaPOWEfdFwBQrUvIThly+e2oM9ZR9wUAVGvHXN6NTB68zfHa6pk7rs7Y43P7AgDYm355pdQZ66j7AgCqJZdXSp2xjrovAKBau+dyAABglVwOAADx5HIAAIgnlwMAQDy5HAAA4snlAAAQTy4HAIB4cjkAAMSTywEAIN5eubybEr3ZJfVXeDEoNfciz82PeqUauvIAAPvZN5dfTlN/9gqpsOCMyxd2dRdz8/vHRXMAgNuTy8MUXJPxU8Z5Oj2X9+fH5vKokwIA1ONGny9PzIvjjHia+XzFwn9Ozk859dxJr1kncf2UU0xOG1y01aXm5o8fJ9aTuN+UCtMvNQDA8dwil+fmzrmMOPd4/Nys8y4vmLhOSp0LpyiocHBwvP3lReYuV+6LdeXj1Q0CANyJ3XN5etjqh8Lxg7nHy9PSDZ5VsODktG5kef4166esOTd/8GDz/aasWfbCAQAcw765PCtpLeS8hcdzefTK1JubKVPWWZ5ZsPhpFKNX15ybv/d+EwtLPCkAwPG0mstPCZlyq3yZsk5KDSn1X1Pn3H+mzN97v8vrZ10BAIBDqiWXdz2JfzSXaxeWWj11cU5drXN5ayl1Dp41V//q+nPzr7lu1x9POSMAwIH5vk8AAIgnlwMAQDy5HAAA4snlAAAQTy4HAIB4cjkAAMSTywEAIJ5cDgAA8eRyAACIJ5cDAEA8uRwAAOLJ5QAAEE8uBwCAeHI5AADEk8sBACCeXA4AAPHkcgAAiCeXAwBAPLkcAADiyeUAABBPLgcAgHhyOQAAxJPLAQAgXsO5vOsZH7/9eSvUSp0HttNLcLev7L1t/N72C3DnGs7lZ5NvWjd4J9vkFDf4/eF0k6sxPnVV60StfznLHie6zQ/5rvPLtJtTy8pud78A5DpmLl84vvd591uhPz/luVFv51udt/5XMPZEtV2f1q/n3orL3m+/3Uv2WByAAnvl8m7kcsq5fDk5+fTwzWPuTyf3lviWs3reyUXS5y9chOVTpJe6MHluhfGETepcmL/V9Slb5zT/w5ayr9z1x6coXielnvFS48dl+8qtf/BHC8VMrlO83/E6ucdTzrt6vH9kvPesU99gv1nXAYAb2DeXn176q9vxW9Tg8eqE00zIWH5fWX3X2eq8BetkvSN2MxLnT1be/9PVmsfTlk+9cPCa63PNOoOrkbKX1fPOrb9hnbklZe0xpZ6U587N36TIgnWiznuafx1TTld83q32C0CsWnL5KfN9fXJC+h+tTutGlp81N//68uaqSpy8sMhplCHGT+xPSKw593ou15m1/uSEyf0m7qV4/eXruXAdyq5zyuOUddKPz9WfWGRibavrrF7PxE0lnnq1ntPOP2832C8AgSrK5ZNHVt/Y5t54ct+QUt7kCuYvrHNNhSnPzSpp9QUav45Z5829nqtPSf852eQnJHf91et5ZT2Jp0hfM/H6b3Udlp+1XF7WBhN/GLIKWK5h7hRZp77NfruXJFYFwN4Ccvmp936w+t6z+p6UfnDSVuctWKd/ifZ4a5xbdnU7k4/TS53c11bX55p1Uupc3VTi+hvWWVzSVvvKrT9379fUudXj/pHJTRVch7kt1LxfAGLtnsvPJv+//+SchTePhfnLbz/LUs67UM/gvOnrnPZ8X7ymmPFFnvvP1bNvVVLxOguLz62/uqnE9fvH+xMK6pwrZnkLiaslbmF1X7nzy7acvk7u8dX6U44vb6q2/Z6Sf0gAuI2w+yQWvB94C4FE/seS6w6v2B1uGaByt87ly82bBcVPhPvhfyYA0K7mv1cIAAAOQC4HAIB4cjkAAMSTywEAIJ5cDgAA8eRyAACIJ5cDAEC83XN5bbdSrq2eOeqMddR9AQDVkssrpc5YR90XAFCtF194/l3vfEf6yMjl3cjkwdscr62euePqjD0+ty8AgL099+wzuUO//BbUGeuo+wIAqnVO2Fn/Vy6/BXXGOuq+AIBq5Yby973np9yPBQAANrZ7vxwAAFilXw4AAPH0ywEAIJ5+OQAAxNMvBwCAePrlAAAQT78cAADi6ZcDAEC86r7vc25+95IrN9zK9ziqM9ZR9wUAVGv3fvlWubxgqf0WuYGQOgvOuNWLsuv8Aq38nAAAh1Fdv3yBXF7hGa+vc8Pf3DbUys8JAHAYFfXLu5654zfL5QsnnTzejSzP36rOhfWXixmcYqH+XevMvW5z8+cez62z4b4AADZR3f1YJkPV5B/tKuW8k3O6h5F37/pTsuncJV2ItptLqSfluXPzC64DAEBVKuqXT87fPFclLrKaI+dCbTeVy8fzt6pzbmZK/cvTblPn6vHxdSvbb0qFKVUBAOykus+XL4SqTaJS4iJz51193E3l8v3qnJtfkFNvk1/H8zfJ2as/J9fXCQCwK/3y9WlZj7v5XJ5V/051Lqw8WfPedc6dd6v5e19/AICtVNQv70YGx7NWWz5L1rTJXDioZy47Dva1eZ0L608eXy4mpM65805e54L5e19/AIBN+L5PAACIV939WAAA4A7plwMAQDz9cgAAiKdfDgAA8fTLAQAgnn45AADE0y8HAIB4+uUAABCvou/7vI3a6pmjzlhH3RcAUK3d++W15Zva6pmjzlhH3RcAUK0d++XdyOTB2xyvrZ654+qMPT63LwCAvemXV0qdsY66LwCgWj5fXil1xjrqvgCAarkfCwAAxHP/cgAAiKdfDgAA8fTLAQAgnn45AADE0y8HAIB4+uUAABBPvxwAAOLplwMAQLzqvu9zbvL4ePdQ+vpNfI9jep0FF2FD9V/PsutT/74AgIPZvV++SWgeHx8cyU2xifUESqyzPy1ka5Vfz+LrU/m+AIDjqaVfPtfUXD4+mJOy4Vbylly+ObkcAKhZ8/3yueCee4rlaYPTpR8vVrCCXL5MLgcAalbX/VjKcvnCE69RnMXl49pk/eYGABCi7X55QRQuqGc8P/d4gU2u2w00lHdbuaQAwH2q5fPly5MXcnnuWY6Xy2MTZEP5VS4HAGrWdr+84CwFM+fOlXi8TOIi/WkhUbLy/Fp8fSrfFwBwPLX0y7uR5ePjP0rccEHePV2R0Ytded1upv78WnZx6t8XAHAwvu8TAADi1XU/FgAAuE/65QAAEE+/HAAA4umXAwBAPP1yAACIp18OAADxarl/+TX2uH/5YH7N9wUPvHn5qZ37fOcW2cq+AIDDqOv7PgvkRtKCemrO5f1pNdcZq5UXHQC4Z233ywtaxa1ENLl8E8V/mVD5vgCA42m4X35Zeadc3j1UVmSxVqJkE/m1lYsJANyzVu/HsnefOLwPnauJIqO4OABA/Vrtl3dT0p+YNa3+PnRg7mwi8uqXAwD1a/vz5QWnOF4uj02QTeRXuRwAqF+r/fK+e87lrdQZSy4HAOrXfL+860mfn7Vy1rO2kpXLcy/ChirPr8XXp/J9AQDH4/s+AQAgXqv3YwEAgCPRLwcAgHj65QAAEE+/HAAA4umXAwBAPP1yAACI1/D9y8tu2p17X/DS6q5VsK+9Slk7bxP3+c4tspV9AQCH0er3ffaX3en7YhrK5YGlNpFfC4psYl8AwJG02i+Xy/vT5PI5xden8n0BAMfTar+8b9dcHpV69cs3JJcDAPVr/n4s++Wn4pb87VVeXjjXBwCoX9v98l37oLG5XL98Q/rlAED9Wv18efHKcvm2msivcjkAUL9W++XFoVku31YT+VUuBwDq12q/vBvJemL6tNz1t5JVZ8F12Erl+XXvnxMAgK34vk8AAIjX/P1YAADgAPTLAQAgnn45AADE0y8HAIB4+uUAABBPvxwAAOK1ev/y/uJZ6xfcxDrkPtbuX74V9y8HAJrQ6vd9Fq+c/qzLzJrzbnh8DC9g2aC8glcfAOA2Wu2XFy/bSjKTyzfRLy+rZV75vgCA42m1Xy6XZ03bT3gBywZ/6dHKqw8A3KFW78fSPdTc+ltppc4o/Vx+krYBgIodoV+edYpWOqYFZw8puPKkO/ilpZVXHwC4Q0f4fLlcXvyU61WeXwd/k9DKqw8A3CH98g1m7iHx7MXXYSuV59dBea28+gDAHWq1X34afUQh61k7Lb6h3AQZVWr9+bV7KOtZO5YFAPCQ7/sEAIB4rd6PBQAAjkS/HAAA4umXAwBAPP1yAACIp18OAADx9MsBACBeq/cv70aynrh5PZtz//KtHPvnBAA4jCN83+dtnnhjiXX2p4VsrfLrOSgv97edfYoCAJjQdr/8lk+8sYI65fKx8e8tcjkAUCf98pWZUflMLt/EpbzcV7PyfQEAx9Pq/Vi6h3Zaf/y4ToG/P1Sun8tPLbyUAMDdarVf3pd1isTJ3cgVBZbQL9/E4BXULwcAqtXq58v79svlVxR1Lbl8E4Nfq+RyAKBarfbLy8JW+uTi9bdysDqjDMqTywGAajXcL+96cp+13/pbOV6dUbqHsp61Y1kAAA/5vk8AAIjX6v1YAADgSPTLAQAgnn45AADE0y8HAIB4+uUAABBPvxwAAOI1fP/yy/q585u4L3XBfdn3KmXtvJVfT/cvBwCa0Or3fRYv3kreaiVEVn49B+XlflvTPkUBAExotV9e/CWXreStxDqLr8NWKr+e/fKyLlTl+wIAjke/fGVmVD7TL9/EpbzcV7PyfQEAx9P2/VhuE57qj2j1Vxiln8tPLhQAUDH98pWZUS1z/fJNDF5B/XIAoFqtfr68ePHEp/SnyeV1njrF4NcquRwAqJZ++fo0ubzOU6cYlCeXAwDVarVf3o1kPTHrFFnP2krW7w8F12Er9efXvX9OAAA24fs+AQAgXtv3YwEAgGPQLwcAgHj65QAAEE+/HAAA4umXAwBAPP1yAACI1+r9y08P70ud+6w96tlWwb72KmXtvJVfT/cvBwCa0Or3ffaXPWTeamVTlV/PQXnp1Va+LwDgeBrul5edopW8lVhn2V8abKjy6zn+/U0uBwDq1Gq/vG+nXB4beVv5ZaPy/HopL/fVrHxfAMDxtH0/lv1y87jPuvkpNlR/hVH6ufzkQgEAFdMv32DNPeiXb2LQJtcvBwCq5fPlG6y5B7l8E4O/UZHLAYBqtdovLwtb6ZOL19+KXL6JQXlyOQBQrYb75V1P7rP2W38rWb8/BJZaf34tuz717wsAOBjf9wkAAPHavh8LAAAcg345AADE0y8HAIB4+uUAABBPvxwAAOLplwMAQDz9cgAAiKdfDgAA8Rr+vs8ytdUzR52xjrovAKBau/fLa8s3tdUzR52xjrovAKBaO/bLu5HJg7c5Xls9c8fVGXt8bl8AAHvTL6+UOmMddV8AQLV8vrxS6ox11H0BANVyPxYAAIjn/uUAABBPvxwAAOLplwMAQDz9cgAAiKdfDgAA8fTLAQAgnn45AADE0y8HAIB4e/XLuynRm11Sf4UXg1JzL/Lc/KgXq6ErDwCwn7365ZOZL2yXCUIqLDjj8oVd3cXc/NjXq/4fDwCAve3bL7+cRvAaK7gm46f0j6S0uufm566zOT8hAMCdu9HnyxPz4kLvNr1PPDk/5dRzJ71mncT1U04xOW1w0VaXmpufu07uflNWTrwOAACHdIv7seTmzsm8uPB4/Nys8y4vmLhOSp0LpyiocHBwvP3lRbqpOF6wzpWPVzcIAHAndu+Xp4et7iWnhJy9kCPL4t3gWQULTk7rRpbnX7N+yppz83PXSakn9xqWvXAAAMewb788K2kt5LyFx3M58srUm5spU9ZZnlmw+KmXgxPXnJtfEKMnZ849MbGwlDMCABzSvv3yaxLt+OBcBJybs1WeTlknpYaU+q+pc+4/U+YvT1su45rHiacDADi8WvrlXU/iHy1nyrJTT66ZuNRynctbS6lz8Ky5+lfXn5u/sM5CGen7XT6+ejoAgGPzfZ8AABDvFvdjAQAAlumXAwBAPP1yAACIpzLQY9AAABDqSURBVF8OAADx9MsBACCefjkAAMTTLwcAgHj65QAAEE+/HAAA4umXAwBAPP1yAACIp18OAADx9MsBACCefjkAAMTTLwcAgHj65QAAEE+/HAAA4umXAwBAPP1yAACIp18OAADx9MsBACCefjkAAMRruF/e9YyP3/68FWqlzgPb6SU4zCt7mI3sxPUBuCvN98sn37Ru8E62ySlu8PvD6SZXY3zqqtaJWv9ylj1OVGFcK6unno3kltH0zw8AFWq4X34296Z1m675LVfoz095btTb+Vbnrf8VjD1RbXGtuJ5KNnLN/x53td+JupfssTgABfbql3cjl1PO5cvJyaeHbx5zfzq5t8S3nNXzTi6SPn/hIiyfIr3UhclzK4wnbFLnwvytrk/ZOqf5H7aUfeWuPz5F8Top9YyXGj/O2ldund3IlfUn1rNwPGu/C/VnzZ97fGWdO12frHoAuIG9+uWX/3ffzbyFDx6nvLctvLXMbW/1XWer8xask/WO2M1InD9Zef9PV2seT1s+9cLBa67PNesMrkbKXlbPO7f+hnXmlpS1x9qu51aPc8+b8vSU+XvXuff1ASDWvv3yU3IuP2W+z01OSP+j1WndyPKz5uZfX95cVYmTFxbpz1l9UcbTss67cD2X68xaf3LC5H4T91K8/vL1XLgOZdc55XHKOsX7TTxXYvEL1yel+PRTpx8vqCdlfkqRN74+AASqpV9+sfBmk/XGk/uGlPsmmjh/YZ1rKkx5blZJqy/Q+HXMOm/u9Vx9SvrPySY/Ibnrr17PK+tJPEX6mpVcz9VFEovJKmBhqa1e99yCb3N9upes1gPAbQT0y0+994PV956y97n0N5utzluwTv8S7fHWOLfs6nYmH6eXOrmvra7PNeuk1Lm6qcT1N6yzuKRr9hV1Pbd63D8yV/zcH+Veh+vrHIu6PgDE2r1ffjb5//0n5yy8eSzMz33bm1s/9/j4vOnrnPZ8X7ymmPFFnvvP1bNvVVLxOguLz62/uqnE9fvH+xMK6pwrZnkLiauFX89TwvUpOD5XT/H808z/HBLnL1+6sRtcn/GOAIgVdv/ygvcDbyGQyP9YXIFVLhFAbW59//LcptH1T4T74X8mANCu5r/vEwAADqD57/sEAIAD0C8HAIB4+uUAABBPvxwAAOLplwMAQDz9cgAAiLd7v7y2WynXVs8cdcY66r4AgGrt3i+vLd/UVs8cdcY66r4AgGrt2C/vRiYP3uZ4bfXMHVdn7PG5fQEA7E2/vFLqjHXUfQEA1fL58kqpM9ZR9wUAVMv9WAAAIJ77lwMAQDz9cgAAiKdfDgAA8fTLAQAgnn45AADE0y8HAIB4+uUAABBPvxwAAOJV932fc/O7l1y54Va+x1GdsY66LwCgWrv3y7fK5QVL7bfIDYTUWXDGrV6UXecXaOXnBAA4jOr65Qvk8grPeH2dG/7mtqFWfk4AgMOoqF/e9cwdv1kuXzjp5PFuZHn+VnUurL9czOAUC/XvWmfudZubP/d4bp0N9wUAsInq7scyGaom/2hXKeednNM9jLx715+STecu6UK03VxKPSnPnZtfcB0AAKpSUb98cv7muSpxkdUcORdqu6lcPp6/VZ1zM1PqX552mzpXj4+vW9l+UypMqQoAYCfVfb58IVRtEpUSF5k77+rjbiqX71fn3PyCnHqb/Dqev0nOXv05ub5OAIBd6ZevT8t63M3n8qz6d6pzYeXJmveuc+68W83f+/oDAGylon55NzI4nrXa8lmypk3mwkE9c9lxsK/N61xYf/L4cjEhdc6dd/I6F8zf+/oDAGzC930CAEC86u7HAgAAd0i/HAAA4umXAwBAPP1yAACIp18OAADx9MsBACCefjkAAMTTLwcAgHgVfd/nbdRWzxx1xjrqvgCAau3eL68t39RWzxx1xjrqvgCAau3YL+9GJg/e5nht9cwdV2fs8bl9AQDsTb+8UuqMddR9AQDV8vnySqkz1lH3BQBUy/1YAAAgnvuXAwBAPP1yAACIp18OAADx9MsBACCefjkAAMTTLwcAgHj65QAAEE+/HAAA4rX9fZ/dS3Kfst/6W0k8bzeye2VTBdz4pFnKrk/9+wIADmb3fvl++aZs5fRnXWbWnHfD42N4AcsG5RW8+gAAt9Fqv7x42VaSmVy+iX55WS3zyvcFABxPq/1yuTxr2n7CC1g2+EuPVl59AOAOtXo/lu6h5tbfSit1Runn8pO0DQBU7Aj98qxTtNIxLTh7SMGVJ93BLy2tvPoAwB06wufL5fLip1yv8vw6+JuEVl59AOAO6ZdvMHMPiWcvvg5bqTy/Dspr5dUHAO5Qq/3y0+gjClnP2mnxDeUmyKhS68+v3UNZz9qxLACAh3zfJwAAxGv1fiwAAHAk+uUAABBPvxwAAOLplwMAQDz9cgAAiKdfDgAA8Vq9f3k3kvXEzevZnPuXb+XYPycAwGEc4fs+b/PEG0ussz8tZGuVX89Bebm/7exTFADAhLb75bd84o0V1CmXj41/b5HLAYA66ZevzIzKZ3L5Ji7l5b6ale8LADieVu/H0j200/rjx3UK/P2hcv1cfmrhpQQA7lar/fK+rFMkTu5GriiwhH75JgavoH45AFCtVj9f3rdfLr+iqGvJ5ZsY/FollwMA1Wq1X14WttInF6+/lYPVGWVQnlwOAFSr4X5515P7rP3W38rx6ozSPZT1rB3LAgB4yPd9AgBAvFbvxwIAAEeiXw4AAPH0ywEAIJ5+OQAAxNMvBwCAePrlAAAQr7r7l89NHh8/9n2p3b98K3vf5x4AYBN1fd/n3OTx8cGR3BSbWE+gxDr700K2Vvn1LL4+le8LADieWvrlc03N5eODOSkbbiVvyeWbk8sBgJo13y+fC+65p1ieNjhd+vFiBSvI5cvkcgCgZnXdj6Usly888RrFWVw+rk3Wb24AACHa7pcXROGCesbzc48X2OS63UBDebeVSwoA3KdaPl++PHkhl+ee5Xi5PDZBNpRf5XIAoGZt98sLzlIwc+5cicfLJC7SnxYSJSvPr8XXp/J9AQDHU0u/vBtZPj7+o8QNF+Td0xUZvdiV1+1m6s+vZRen/n0BAAfj+z4BACBeXfdjAQCA+6RfDgAA8fTLAQAgnn45AADE0y8HAIB4+uUAABCvlvuXX2OP+5cP5td8X/DAm5ef2rnPd26RrewLADiMur7vs0BuJC2op+Zc3p9Wc52xWnnRAYB71na/vKBV3EpEk8s3UfyXCZXvCwA4nob75ZeVd8rl3UNlRRZrJUo2kV9buZgAwD1r9X4se/eJw/vQuZooMoqLAwDUr9V+eTcl/YlZ0+rvQwfmziYir345AFC/tj9fXnCK4+Xy2ATZRH6VywGA+rXaL++751zeSp2x5HIAoH7N98u7nvT5WStnPWsrWbk89yJsqPL8Wnx9Kt8XAHA8vu8TAADitXo/FgAAOBL9cgAAiKdfDgAA8fTLAQAgnn45AADE0y8HAIB4Dd+/vOym3bn3BS+t7loF+9qrlLXzNnGf79wiW9kXAHAYrX7fZ3/Znb4vpqFcHlhqE/m1oMgm9gUAHEmr/XK5vD9NLp9TfH0q3xcAcDyt9sv7ds3lUalXv3xDcjkAUL/m78eyX34qbsnfXuXlhXN9AID6td0v37UPGpvL9cs3pF8OANSv1c+XF68sl2+rifwqlwMA9Wu1X14cmuXybTWRX+VyAKB+rfbLu5GsJ6ZPy11/K1l1FlyHrVSeX/f+OQEA2Irv+wQAgHjN348FAAAOQL8cAADi6ZcDAEA8/XIAAIinXw4AAPH0ywEAIF6r9y/vr587v4n7UufW6XuF5rh/OQDQhFa/77N48VbyVishsvLrOSgvvdrK9wUAHE+r/fKCDuiu9Wwusc7i67CVyq9nv7ysC1X5vgCA49EvX5kZlc/0yzdxKS/31ax8XwDA8bR9P5bbhKf6I1r9FUbp5/KTCwUAVEy/fGVmVMtcv3wTg1dQvxwAqFarny8vXjzxKf1pcnmdp04x+LVKLgcAqqVfvj5NLq/z1CkG5cnlAEC1Wu2XdyNZT8w6RdaztpL1+0PBddhK/fl1758TAIBN+L5PAACI1/b9WAAA4Bj0ywEAIJ5+OQAAxNMvBwCAePrlAAAQT78cAADitXr/8tPD+1LnPmuPerZVsK+9Slk7b+XX0/3LAYAmtPp9n/1lD5m3WtlU5ddzUF56tZXvCwA4nob75WWnaCVvJdZZ9pcGG6r8eo5/f5PLAYA6tdov79spl8dG3lZ+2ag8v17Ky301K98XAHA8bd+PZb/cPO6zbn6KDdVfYZR+Lj+5UABAxfTLN1hzD/rlmxi0yfXLAYBq+Xz5BmvuQS7fxOBvVORyAKBarfbLy8JW+uTi9bcil29iUJ5cDgBUq+F+edeT+6z91t9K1u8PgaXWn1/Lrk/9+wIADsb3fQIAQLy278cCAADHoF8OAADx9MsBACCefjkAAMTTLwcAgHj65QAAEE+/HAAA4umXAwBAvIa/77NMbfXMUWeso+4LAKjW7v3y2vJNbfXMUWeso+4LAKjWjv3ybmTy4G2O11bP3HF1xh6f2xcAwN70yyulzlhH3RcAUC2fL6+UOmMddV8AQLXcjwUAAOK5fzkAAMTTLwcAgHj65QAAEE+/HAAA4umXAwBAPP1yAACIp18OAADx9MsBACDeXv3ybkr0ZpfUX+HFoNTcizw3P+rFaujKAwDsZ69++WTmC9tlgpAKC864fGFXdzE3P/b1qv/HAwBgb/v2yy+nEbzGCq7J+Cn9Iymt7rn5uetszk8IAHDnbvT58sS8uNC7Te8TT85POfXcSa9ZJ3H9lFNMThtctNWl5ubnrpO735SVE68DAMAh3eJ+LLm5czIvLjwePzfrvMsLJq6TUufCKQoqHBwcb395kW4qjhesc+Xj1Q0CANyJ3fvl6WGre8kpIWcv5MiyeDd4VsGCk9O6keX516yfsubc/Nx1UurJvYZlLxwAwDHs2y/PSloLOW/h8VyOvDL15mbKlHWWZxYsfurl4MQ15+YXxOjJmXNPTCws5YwAAIe0b7/8mkQ7PjgXAefmbJWnU9ZJqSGl/mvqnPvPlPnL05bLuOZx4ukAAA6vln5515P4R8uZsuzUk2smLrVc5/LWUuocPGuu/tX15+YvrLNQRvp+l4+vng4A4Nh83ycAAMS7xf1YAACAZfrlAAAQT78cAADi6ZcDAEA8/XIAAIinXw4AAPH0ywEAIJ5+OQAAxNMvBwCAePrlAAAQT78cAADi6ZcDAEA8/XIAAIinXw4AAPH0ywEAIJ5+OQAAxNMvBwCAePrlAAAQ78UXns8azz37jFwOAAAbOyfqROfILZcDAMDGLiE7ZcjlAACwC7kcAADiNZzLu57x8RsUAAAAW2k4l59NpnDRHACAthwzly8cBwCACg1y+eScklzejVyW6//n+PHc51LOB7M+tSKaAwDQinG/fDChsF/eT9KntSyeMuFU9JEV0RwAgCZMfo7l8qfln2PJzeWnhNidm8uFcgAAWjH3+fLTKJTvnssnjxTncqEcAICG7PXvPhdy+eU/c5vo6blcKAcAoC275/KzlPQ8Duvj43PzV+P7nPEiMj0AALcXdp/Egvi7R2KWywEAqMGtc3lx9t0pNMvlAADU4MUXnn/XO9+RPqr7XqEryeUAANTguWefyR3rufzFF543DMMwDMMwDGPvsZTLHwEAALcym8sNwzAMwzAMw7jlmMjlhmEYhmEYhmHcfjzJ5Vn/etQwDMMwDMMwjG3Hc88+U/KvRw3DMAzDMAzD2Hb8fz3eye91N4+hAAAAAElFTkSuQmCC" alt="" />

select * from testsort order by sort desc ,status desc; sort字段为第一排序选择,status为第二排序选择

上一篇:诗人般的机器学习,ML工作原理大揭秘


下一篇:微信平台BAE