2 seconds
512 megabytes
standard input
standard output
On the way to school, Karen became fixated on the puzzle game on her phone!
The game is played as follows. In each level, you have a grid with n rows and m columns.
Each cell originally contains the number 0.
One move consists of choosing one row or column, and adding 1 to all of the cells in that row or column.
To win the level, after all the moves, the number in the cell at the i-th row and j-th
column should be equal to gi, j.
Karen is stuck on one level, and wants to know a way to beat this level using the minimum number of moves. Please, help her with this task!
The first line of input contains two integers, n and m (1 ≤ n, m ≤ 100),
the number of rows and the number of columns in the grid, respectively.
The next n lines each contain m integers.
In particular, the j-th integer in the i-th
of these rows contains gi, j (0 ≤ gi, j ≤ 500).
If there is an error and it is actually not possible to beat the level, output a single integer -1.
Otherwise, on the first line, output a single integer k, the minimum number of moves necessary to beat the level.
The next k lines should each contain one of the following, describing the moves in the order they must be done:
- row x, (1 ≤ x ≤ n)
describing a move of the form "choose the x-th row". - col x, (1 ≤ x ≤ m)
describing a move of the form "choose the x-th column".
If there are multiple optimal solutions, output any one of them.
3 5
2 2 2 3 2
0 0 0 1 0
1 1 1 2 1
4
row 1
row 1
col 4
row 3
3 3
0 0 0
0 1 0
0 0 0
-1
3 3
1 1 1
1 1 1
1 1 1
3
row 1
row 2
row 3
In the first test case, Karen has a grid with 3 rows and 5 columns.
She can perform the following 4 moves to beat the level:
In the second test case, Karen has a grid with 3 rows and 3 columns.
It is clear that it is impossible to beat the level; performing any move will create three 1s on the grid, but it is required to only have
one 1 in the center.
In the third test case, Karen has a grid with 3 rows and 3 columns.
She can perform the following 3 moves to beat the level:
Note that this is not the only solution; another solution, among others, is col 1, col
2, col 3.
————————————————————————————————————
题目的意思是给出一个全0矩阵,操作是在一行或一列全+1,问怎样才能得到给定矩阵
思路:从给定矩阵出发,每一行每一列能全减就贪心减去,根据行列数量决定先处理行还是列
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath> using namespace std; #define LL long long
const int inf=0x7fffffff; int mp[500][500];
struct node
{
int f,x,nu;
} ans[200000];
int n,m,cnt,tot; void Row()
{
for(int i=0; i<m; i++)
{
int mn=inf;
for(int j=0; j<n; j++)
{
mn=min(mn,mp[i][j]);
}
for(int j=0; j<n; j++)
{
mp[i][j]-=mn;
}
if(mn>0)
{
tot+=mn;
ans[cnt].f=1;
ans[cnt].x=mn;
ans[cnt++].nu=i+1;
} }
} void Col()
{
for(int j=0; j<n; j++)
{
int mn=inf;
for(int i=0; i<m; i++)
{
mn=min(mn,mp[i][j]);
}
for(int i=0; i<m; i++)
{
mp[i][j]-=mn;
}
if(mn>0)
{
tot+=mn;
ans[cnt].f=2;
ans[cnt].x=mn;
ans[cnt++].nu=j+1;
} }
} int main()
{ scanf("%d%d",&m,&n); for(int i=0; i<m; i++)
for(int j=0; j<n; j++)
scanf("%d",&mp[i][j]); cnt=0;
tot=0;
if(m>n)
{
Col();
Row();
}
else
{
Row();
Col();
}
int flag=0;
for(int i=0; i<m; i++)
for(int j=0; j<n; j++)
{
if(mp[i][j]>0)
{
flag=1;
break;
}
if(flag)
break;
}
if(flag)
printf("-1\n");
else
{
printf("%d\n",tot);
for(int i=0; i<cnt; i++)
{
if(ans[i].f==1)
for(int j=0;j<ans[i].x;j++)
printf("row %d\n",ans[i].nu);
else
for(int j=0;j<ans[i].x;j++)
printf("col %d\n",ans[i].nu);
}
} return 0;
}