本题分两步:
1 使用Tarjan算法求全部最大子强连通图。而且标志出来
2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集。
Tarjan算法就是模板算法了。
这里使用一个数组和一个标识号,就能够记录这个顶点是属于哪个子强连通图的了。
然后使用DFS递归搜索全部点及其边,假设有边的还有一个顶点不属于本子强连通图。那么就说明有出射的边。
有难度的题目:
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <stack>
using namespace std; const int MAX_VEC = 5005;
int n, m;
vector<int> gra[MAX_VEC];
stack<int> stk;
int dfn[MAX_VEC];//tarjan算法记录深度探索得到的标号
int low[MAX_VEC];//tarjan算法记录回溯得到的最低顶点编号
bool inStk[MAX_VEC];//记录是否在栈里面,也能够记录是否被訪问过了
int connectGrp[MAX_VEC];//标志所属的连通子图标号 == connectNum
int vecNum;//顶点标号
int connectNum;//最大强连通子图标号
int out[MAX_VEC];//出度记录 void tarjan(int u)
{
dfn[u] = low[u] = vecNum++;
stk.push(u);
inStk[u] = 1;
for (int i = 0; i < (int)gra[u].size(); i++)
{
int v = gra[u][i];
if (!dfn[v])
{
tarjan(v);
low[u] = min(low[u], low[v]);//两处的不同,和含义不同
}
else if (inStk[v]) low[u] = min(dfn[v], low[u]);//两处的不同
}
if (low[u] == dfn[u])
{
++connectNum;
while (stk.size())
{
int v = stk.top(); stk.pop();
inStk[v] = false;
connectGrp[v] = connectNum;
if (u == v) return;
}
}
} void solveConnect()
{
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(inStk, 0, sizeof(inStk));
for (int i = 1; i <= n; i++)
{
if (!dfn[i]) tarjan(i);
}
} void dfsCountOut(int u)
{
inStk[u] = true; //记录是否被訪问过了
for (int i = 0; i < int(gra[u].size()); i++)
{
int v = gra[u][i];
if (connectGrp[u] != connectGrp[v])
{
out[connectGrp[u]]++;//这个组的出度添加; connectGrp[] == connectNum
}
if (!inStk[v]) dfsCountOut(v);//深度优先,不须要使用额外空间
}
} void countConnectOut()
{
memset(inStk, 0, sizeof(inStk)); //这里仅仅记录是否被訪问过的了。
memset(out, 0, sizeof(out));
for (int i = 1; i <= n; i++)
{
if (!inStk[i]) dfsCountOut(i);
}
} int main()
{
int u, v;
while (scanf("%d", &n) && n)
{
connectNum = 0;
vecNum = 1;
scanf("%d", &m);
for (int i = 1; i <= n; i++)
gra[i].clear();
while (stk.size()) stk.pop(); //清零。重中之重 for (int i = 0; i < m; i++)
{
scanf("%d %d", &u, &v);
gra[u].push_back(v); //有向图
} solveConnect();
countConnectOut(); for(int i = 1; i <= n; ++i)
if(out[connectGrp[i]] == 0)
printf("%d ", i);
putchar('\n');
}
return 0;
}