数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

一、概念

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

二叉搜索树(Binary Sort Tree/Binary Search Tree...),是二叉树的一种特殊扩展。也是一种动态查找表。

在二叉搜索树中,左子树上所有节点的均小于根节点,右子树上所有节点的均值大于根节点

所以,如果使用中序遍历的方法,树数据刚好以从小到大的形式排好序并打印出来。

前驱:在二叉树(前序/中序/后序)搜索中的上一个元素。

后继:在二叉树(前序/中序/后序)搜索中的下一个元素。

关于二叉树的其它性质,可以看上一篇:http://www.cnblogs.com/HongYi-Liang/p/7231440.html




二、程序

C++:

在上一篇中,我们已经实现了二叉树,本篇的二叉搜索树将在上一遍的二叉树类模板中继承。

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

BinarySearchTree.h

#ifndef _BINARYSEARCHTREE_H
#define _BINARYSEARCHTREE_H #include <iostream>
#include <queue>
#include <vector>
#include "BinaryTree.h"
#include "BiTreeNode.h" template <typename T>
class BinarySearchTree:public BinaryTree<T>
{
public:
BinarySearchTree(int size,int rootIndex,T data);
BinarySearchTree(vector<T> vect);
virtual ~BinarySearchTree(); //get
vector<T> getResult(); //add/delete
bool addNode(int index,T data);
bool insert(int index,T data, BiTreeNode<T> *pNode);
bool deleteMinNode();
bool deleteMaxNode(); virtual bool deleteNodeByIndex(int index); //删除节点(使用索引)
virtual bool deleteNodeByNode(BiTreeNode<T> *pNode); //删除节点(使用地址)
virtual bool deleteNodeByData(T data); //删除节点(使用数据) //search
bool searchNode(T data,BiTreeNode<T>** node); //sort
bool sortToVec();
bool sort(BiTreeNode<T> *pNode); //pinrtf
void BSTreePreorderTraversal(); //先序遍历
void BSTreeInorderTraversal(); //中序遍历
void BSTreeSubsequentTraversal(); //后序遍历 private:
vector<T> m_tVec;
}; template <typename T>
BinarySearchTree<T>::BinarySearchTree(int size,int rootIndex,T data):BinaryTree(size,int rootIndex,T data)
{ } template <typename T>
BinarySearchTree<T>::BinarySearchTree(vector<T> vect):BinaryTree((int)vect.size(),,vect[])
{
unsigned int size = vect.size();
for(unsigned int i=;i<size;i++)
{
this->addNode(i,vect[i]);
}
} template <typename T>
BinarySearchTree<T>::~BinarySearchTree()
{ } template <typename T>
vector<T> BinarySearchTree<T>::getResult()
{
sortToVec();
return m_tVec;
} template <typename T>
bool BinarySearchTree<T>::addNode(int index,T data)
{
if(IsTreeFull())
{
return false;
}
insert(index,data,m_pRoot);
return true;
} template <typename T>
bool BinarySearchTree<T>::insert(int index,T data, BiTreeNode<T> *pNode)
{
if(data < pNode->getData())
{
if(pNode ->getLChild() != NULL)
{
if(insert(index,data,pNode->getLChild()))
return true;
}
else
{
if(addLeftNodeByNode(index,data,pNode))
return true;
}
}
else
{
if(pNode ->getRChild() != NULL)
{
if(insert(index,data,pNode->getRChild()))
return true;
}
else
{
if(addRightNodeByNode(index,data,pNode))
return true;
}
}
return false;
} template <typename T>
bool BinarySearchTree<T>::deleteMinNode()
{
if(IsTreeEmpty())
return false; BiTreeNode<T> *pNode = m_pRoot;
while(pNode->getLChild() != NULL)
{
pNode = pNode->getLChild();
}
if(pNode==m_pRoot)
{
pNode = m_pRoot->getRChild();
while(pNode->getLChild()!=NULL)
{
pNode = pNode->getLChild();
}
} deleteNodeByNode(pNode);
return true ;
} template <typename T>
bool BinarySearchTree<T>::deleteMaxNode()
{
if(IsTreeEmpty())
return false; BiTreeNode<T> *pNode = m_pRoot;
while(pNode->getRChild() != NULL)
{
pNode = pNode->getRChild();
}
if(pNode==m_pRoot)
{
pNode = m_pRoot->getLChild();
while(pNode->getRChild()!=NULL)
{
pNode = pNode->getRChild();
}
} deleteNodeByNode(pNode);
return true;
} template <typename T>
bool BinarySearchTree<T>::deleteNodeByIndex(int index)
{
BiTreeNode<T> *pNode = getNodeByIndex(index);
if(NULL != pNode)
{
/*there are 3 condition in the following:
1、The node has no child.
2、The node only has left child or right child.
3、The node both has left and right child,so make the target node replaced by precursor,and then delete precursor by useing condition 2 function.
*/
/*condition 1:no child*/
if(NULL == pNode->getRChild() && NULL == pNode->getLChild())
{
if(pNode!=m_pRoot)
{
BiTreeNode<T> *pfatherNode= pNode->getParent();
if(pfatherNode->getLChild() == pNode)
{
pfatherNode->setLChild(NULL);
}
else
{
pfatherNode->setRChild(NULL);
}
this->m_iSize--;
delete pNode;
}
else
return false;//only root left
}
/*condition 3:The node both has left and right child*/
else if(NULL != pNode->getRChild() && NULL != pNode->getLChild())
{
BiTreeNode<T> *preNode = pNode->getInorderPrecursor();
pNode->setIndex(preNode->getIndex());
pNode->setData(preNode->getData());
pNode = preNode;
}
/*condition 2: The node only has left child or right child.*/
if(NULL == pNode->getRChild())
{
BiTreeNode<T> *pfatherNode= pNode->getParent();
if(pfatherNode->getLChild() == pNode )//Target node is father left son.
{
pfatherNode->setLChild(pNode->getLChild());//Target node left son link to it fater.
}
else//Target node is father right son.
{
pfatherNode->setRChild( pNode->getLChild());//Target node left son link to it father.
}
pNode->setLChild(NULL);
this->m_iSize--;
delete pNode;
}
else if(NULL == pNode->getLChild())
{
BiTreeNode<T> *pfatherNode=pNode->getParent();
if(pfatherNode->getLChild() == pNode )//Target node is father left son.
{
pfatherNode->setLChild(pNode->getRChild());//Target node left son link to it fater.
}
else//Target node is father right son.
{
pfatherNode->setRChild( pNode->getRChild());//Target node left son link to it father.
}
pNode->setRChild(NULL);
this->m_iSize--;
delete pNode;
}
return true;
}
else
return false;//if(NULL != pNode); there are no such node!
}
template <typename T>
bool BinarySearchTree<T>::deleteNodeByNode(BiTreeNode<T> *pNode)
{
return false;
} template <typename T>
bool BinarySearchTree<T>::deleteNodeByData(T data)
{
BiTreeNode<T> *pNode = m_pRoot;
if(searchNode(data,&pNode))
{
/*there are 3 condition in the following:
1、The node has no child.
2、The node only has left child or right child.
3、The node both has left and right child,so make the target node replaced by precursor,and then delete precursor by useing condition 2 function.
*/
/*condition 1:no child*/
if(NULL == pNode->getRChild() && NULL == pNode->getLChild())
{
if(pNode!=m_pRoot)
{
BiTreeNode<T> *pfatherNode= pNode->getParent();
if(pfatherNode->getLChild() == pNode)
{
pfatherNode->setLChild(NULL);
}
else
{
pfatherNode->setRChild(NULL);
}
this->m_iSize--;
delete pNode;
}
else
return false;//only root left
}
/*condition 3:The node both has left and right child*/
else if(NULL != pNode->getRChild() && NULL != pNode->getLChild())
{
BiTreeNode<T> *preNode = pNode->getInorderPrecursor();
pNode->setIndex(preNode->getIndex());
pNode->setData(preNode->getData());
pNode = preNode;
}
/*condition 2: The node only has left child or right child.*/
if(NULL == pNode->getRChild())
{
BiTreeNode<T> *pfatherNode= pNode->getParent();
if(pfatherNode->getLChild() == pNode )//Target node is father left son.
{
pfatherNode->setLChild(pNode->getLChild());//Target node left son link to it fater.
}
else//Target node is father right son.
{
pfatherNode->setRChild( pNode->getLChild());//Target node left son link to it father.
}
pNode->setLChild(NULL);
this->m_iSize--;
delete pNode;
}
else if(NULL == pNode->getLChild())
{
BiTreeNode<T> *pfatherNode=pNode->getParent();
if(pfatherNode->getLChild() == pNode )//Target node is father left son.
{
pfatherNode->setLChild(pNode->getRChild());//Target node left son link to it fater.
}
else//Target node is father right son.
{
pfatherNode->setRChild( pNode->getRChild());//Target node left son link to it father.
}
pNode->setRChild(NULL);
this->m_iSize--;
delete pNode;
}
return true;
}
else
return false;//if(searchNode(data,&pNode)); there are no such node!
} template <typename T>
bool BinarySearchTree<T>::searchNode(T data,BiTreeNode<T>** node)
{
BiTreeNode<T> *pNode = m_pRoot; if(data>m_pRoot->getData())
{
while(data>pNode->getData())
{
if(pNode->getRChild() != NULL)
{
pNode = pNode->getRChild();
}
else
{
return false;
}
}
while(data<pNode->getData())
{
if(pNode->getLChild() != NULL)
{
pNode = pNode->getLChild();
}
else
{
return false;
}
}
*node = pNode;
return true;
}
else
{
while(data<pNode->getData())
{
if(pNode->getLChild() != NULL)
{
pNode = pNode->getLChild();
}
else
{
return false;
}
}
while(data>pNode->getData())
{
if(pNode->getRChild() != NULL)
{
pNode = pNode->getRChild();
}
else
{
return false;
}
}
*node = pNode;
return true;
}
} template <typename T>
bool BinarySearchTree<T>::sortToVec()
{
m_tVec.clear();
sort(m_pRoot);
return true;
} template <typename T>
bool BinarySearchTree<T>::sort( BiTreeNode<T> *pNode)
{
if(pNode->getLChild() != NULL)
{
sort(pNode->getLChild());
} m_tVec.push_back(pNode->getData()); if(pNode->getRChild() != NULL)
{
sort(pNode->getRChild());
} return true;
} template <typename T>
void BinarySearchTree<T>::BSTreePreorderTraversal()
{
PreorderTraversal();
} template <typename T>
void BinarySearchTree<T>::BSTreeInorderTraversal()
{
InorderTraversal();
} template <typename T>
void BinarySearchTree<T>::BSTreeSubsequentTraversal()
{
SubsequentTraversal();
} #endif

BinaryTree.h

#ifndef _BINARYTREE_H
#define _BINARYTREE_H #include <iostream>
#include <queue>
#include "BiTreeNode.h"
using namespace std; template <typename T>
class BinaryTree
{
public:
BinaryTree(int size,int index,T data);
BinaryTree(int size);
virtual ~BinaryTree();
bool IsTreeEmpty(); //树是否为空
bool IsTreeFull(); //树的容量是否已满
//search
BiTreeNode<T> *getNodeByIndex(int index); //通过索引搜索节点
int getLeaves(); //获取树的叶子数
int getHeight(); //获取树的高度(包含根节点)
int getWidth(); //获取树的宽度(包含根节点)
int getNowSize(); //获取树现在的节点数(包含根节点)
int getMaxSize(); //获取树的最大节点数
//add/delete
bool addLeftNodeByIndex(int newIndex,T data,int searchIndex); //添加左子树(使用索引)
bool addRightNodeByIndex(int newIndex,T data,int searchIndex); //添加右子树(使用索引)
bool addLeftNodeByNode(int index,T data,BiTreeNode<T> *pNode); //添加左子树(使用节点地址)
bool addRightNodeByNode(int index,T data,BiTreeNode<T> *pNode); //添加右子树(使用节点地址) virtual bool deleteNodeByIndex(int index); //删除节点(使用索引)
virtual bool deleteNodeByNode(BiTreeNode<T> *pNode); //删除节点(使用地址) //traversal
void PreorderTraversal(); //先序遍历
void InorderTraversal(); //中序遍历
void SubsequentTraversal(); //后序遍历 protected:
BiTreeNode<T> *m_pRoot; //tree root
int m_iSize; //Tree now nodes size (without root)
int m_iMaxSize; //Tree max nodes size (without root)
}; template <typename T>
BinaryTree<T>::BinaryTree(int size,int index,T data)
{
m_pRoot = new BiTreeNode<T>(index,data);
m_pRoot->setLChild(NULL);
m_pRoot->setRChild(NULL);
m_pRoot->setParenet(NULL);
m_iSize = ;
m_iMaxSize = size;
} template <typename T>
BinaryTree<T>::BinaryTree(int size)
{
m_pRoot = new BiTreeNode<T>(,);
m_pRoot->setLChild(NULL);
m_pRoot->setRChild(NULL);
m_pRoot->setParenet(NULL);
m_iSize = ;
m_iMaxSize = size;
} template <typename T>
BinaryTree<T>::~BinaryTree()
{
if(NULL != m_pRoot)
delete m_pRoot;
m_pRoot=NULL;
} template <typename T>
bool BinaryTree<T>::IsTreeEmpty()
{
if(m_iSize == )
return true;
return false;
} template <typename T>
bool BinaryTree<T>::IsTreeFull()
{
if(m_iSize >= m_iMaxSize)
return true;
return false;
} //search
template <typename T>
BiTreeNode<T> *BinaryTree<T>::getNodeByIndex(int index)
{
if(NULL == m_pRoot)
{
return NULL;
}
return m_pRoot->NodeSearch(index);
} template <typename T>
int BinaryTree<T>::getLeaves()
{
if(NULL == m_pRoot)
{
return ;
}
return m_pRoot->NodeLeavesStatistics();
} template <typename T>
int BinaryTree<T>::getWidth()
{
if(NULL == m_pRoot)
{
return ;
}
int maxWidth=; //save max width
int parentWidth=; //save this width
int childrenWidth=; //save next width
queue<BiTreeNode<T>*> stdQueue;
BiTreeNode<T> *tempNode = m_pRoot;
if(tempNode -> getLChild() != NULL)
{
stdQueue.push(tempNode -> getLChild());
parentWidth ++;
}
if(tempNode -> getRChild() != NULL)
{
stdQueue.push(tempNode ->getRChild());
parentWidth ++;
} while(!stdQueue.empty())
{
while(parentWidth>)
{
tempNode = stdQueue.front();
stdQueue.pop();
if(tempNode -> getLChild() != NULL)
{
stdQueue.push(tempNode -> getLChild());
childrenWidth ++;
}
if(tempNode -> getRChild() != NULL)
{
stdQueue.push(tempNode ->getRChild());
childrenWidth ++;
}
parentWidth --;
}
parentWidth = childrenWidth;
if(parentWidth > maxWidth)
{
maxWidth = parentWidth;
}
childrenWidth =;
} // result = m_pRoot->NodeChildrenNodeWidth(&child);
return maxWidth;
} template <typename T>
int BinaryTree<T>::getHeight()
{
if(NULL == m_pRoot)
return ;
return m_pRoot->NodeChildrenNodeHeigh();//including root
} template <typename T>
int BinaryTree<T>::getNowSize()
{
if(NULL == m_pRoot)
{
return ;
}
//return m_iSize;//quickly get Size
return m_pRoot ->NodeChildrenStatistics();//including root
} template <typename T>
int BinaryTree<T>::getMaxSize()
{
return m_iMaxSize ;
} //add/delete
template <typename T>
bool BinaryTree<T>::addLeftNodeByIndex(int newIndex,T data,int searchIndex)
{
if(NULL == m_pRoot)
{
return false;
}
BiTreeNode<T> *tempNode;
tempNode = m_pRoot->NodeSearch(searchIndex);//find the node that index is = searchIndex
if(tempNode!=NULL)
{
return addLeftNodeByNode(newIndex,data,tempNode);
}
return false;
}
template <typename T>
bool BinaryTree<T>::addRightNodeByIndex(int newIndex,T data,int searchIndex)
{
if(NULL == m_pRoot)
{
return false;
}
BiTreeNode<T> *tempNode ;
tempNode = m_pRoot->NodeSearch(searchIndex);
if(tempNode!=NULL)
{
return addRightNodeByNode(newIndex,data,tempNode);
}
return false;
}
template <typename T>
bool BinaryTree<T>::addLeftNodeByNode(int index,T data,BiTreeNode<T> *pNode)
{
BiTreeNode<T> *pNodeCopy = pNode;//make a copy of pNode to protect the pNode being changed by accidentally
if(IsTreeFull())
{
return false ;
}
if(pNodeCopy -> getLChild() == NULL)
{
BiTreeNode<T> *newNode = new BiTreeNode<T>(index,data);
pNodeCopy->setLChild(newNode);
newNode->setParenet(pNodeCopy);
}
else
{
return false ;
} m_iSize++;
return true;
} template <typename T>
bool BinaryTree<T>::addRightNodeByNode(int index,T data,BiTreeNode<T> *pNode)
{
BiTreeNode<T> *pNodeCopy = pNode;//make a copy of pNode to protect the pNode being changed by accidentally
if(IsTreeFull())
{
return false ;
}
if(pNodeCopy -> getRChild() == NULL)
{
BiTreeNode<T> *newNode = new BiTreeNode<T>(index,data);
pNodeCopy->setRChild(newNode);
newNode->setParenet(pNodeCopy);
}
else
{
return false ;
} m_iSize++;
return true;
} template <typename T>
bool BinaryTree<T>::deleteNodeByIndex(int index)
{
if(IsTreeEmpty())
{
return false;
} BiTreeNode<T> *deleteNode = m_pRoot->NodeSearch(index);
if(deleteNode != NULL)
{
if(deleteNode == m_pRoot)
{
cout<<"BinaryTree<T>::deleteNodeByIndex():"<<index<<"是根节点不能删除"<<endl;
return false;
}
return deleteNodeByNode(deleteNode);
}
return false;
}
template <typename T>
bool BinaryTree<T>::deleteNodeByNode(BiTreeNode<T> *pNode)
{
if(IsTreeEmpty())
return false; if(pNode!=NULL)
{
/*clear parent Node L/RChild*/
BiTreeNode<T> *parentNode = pNode->getParent();
if(parentNode != NULL)
{
if(parentNode->getLChild() == pNode)
{
parentNode->setLChild(NULL);
}
else
{
parentNode->setRChild(NULL);
}
}
/*delete node*/
int SizeDec;//use to caculate how much Node was delete
SizeDec = pNode->NodeDelete();
m_iSize-=SizeDec;
return true;
}
return false;
} //traversal
template <typename T>
void BinaryTree<T>::PreorderTraversal()
{
cout<<"PerorderTraversal:"<<endl;
if(NULL == m_pRoot)
{
return ;
}
m_pRoot ->NodePreorderTraversal();
}
template <typename T>
void BinaryTree<T>::InorderTraversal()
{
cout<<"InorderTraversal:"<<endl;
if(NULL == m_pRoot)
{
return ;
}
m_pRoot ->NodeInorderTraversal();
}
template <typename T>
void BinaryTree<T>::SubsequentTraversal()
{
cout<<"SubsequentTraversal:"<<endl;
if(NULL == m_pRoot)
{
return ;
}
m_pRoot ->NodeSubsequentTraversal();
} #endif

BiTreeNode.h

#ifndef _BITREENODE_H
#define _BITREENODE_H
#include<iostream>
using namespace std; template <typename T>
class BiTreeNode
{
public:
BiTreeNode();
BiTreeNode(int index,T data);
virtual ~BiTreeNode();
//get data
int getIndex();
T getData();
BiTreeNode *getParent();
BiTreeNode *getLChild();
BiTreeNode *getRChild();
BiTreeNode *getInorderPrecursor(); //获取中序前驱
BiTreeNode *getInorderSubsequence(); //获取中序后继
//set data
void setIndex(int index);
void setData(T data);
void setParenet(BiTreeNode *Node);
void setLChild(BiTreeNode *Node);
void setRChild(BiTreeNode *Node);
//else
BiTreeNode *NodeSearch(int index); //通过索引搜索节点(以本节点作为根寻找树的某个节点)
int NodeLeavesStatistics(int leaves = ); //统计叶子数
int NodeChildrenNodeHeigh(); //统计子节点的最大高度(包含本节点)/(以本节点作为根求树的高度)
int NodeChildrenStatistics(); //统计子节点数(包含本节点)
int NodeDelete(); //删除节点
//traversal
void NodePreorderTraversal();
void NodeInorderTraversal();
void NodeSubsequentTraversal(); private:
int m_iIndex;
T m_tData;
BiTreeNode *m_pParent;
BiTreeNode *m_pLeftChild;
BiTreeNode *m_pRightChild; //struct NodeWidth<T> stNodeWidth;
}; template <typename T>
BiTreeNode<T>::BiTreeNode()
{
m_iIndex = ;
m_tData = ;
m_pParent = NULL;
m_pLeftChild = NULL;
m_pRightChild = NULL;
} template <typename T>
BiTreeNode<T>::BiTreeNode(int index,T data)
{
m_iIndex = index;
m_tData = data;
m_pParent = NULL;
m_pLeftChild = NULL;
m_pRightChild = NULL;
} template <typename T>
BiTreeNode<T>::~BiTreeNode()
{
if(m_pLeftChild != NULL)
{
m_pLeftChild->NodeDelete();
m_pLeftChild = NULL;
}
if(m_pRightChild != NULL)
{
m_pRightChild->NodeDelete();
m_pRightChild = NULL;
}
m_pParent = NULL;
}
/*-----------------------getdata------------------------*/
template <typename T>
int BiTreeNode<T>::getIndex()
{
return m_iIndex;
} template <typename T>
T BiTreeNode<T>::getData()
{
return m_tData;
} template <typename T>
BiTreeNode<T> *BiTreeNode<T>::getParent()
{
return m_pParent;
} template <typename T>
BiTreeNode<T> *BiTreeNode<T>::getLChild()
{
return m_pLeftChild;
} template <typename T>
BiTreeNode<T> *BiTreeNode<T>::getRChild()
{
return m_pRightChild;
} template <typename T>
BiTreeNode<T> *BiTreeNode<T>::getInorderPrecursor()
{
/*
condition 1: Node has left child.
condition 2: Node hasn't left child,and it is its father right child.
condition 3: Node hasn't left child,and it is its father left child.
*/
/*condition 1:node has left child*/
if(NULL != this->getLChild())
{
BiTreeNode *tempNode=this->getLChild();
while(NULL != tempNode->getRChild() )
{
tempNode=tempNode->getRChild();
}
return tempNode;
}
else
{
BiTreeNode *fatherNode=this->getParent();
if(NULL == fatherNode)
{
return NULL;//it is root.
}
/*condition 2*/
else if(fatherNode->getRChild() == this)
{
return fatherNode;
}
/*condition*/
else
{
while( fatherNode->getParent()->getRChild() != fatherNode)
{
fatherNode =fatherNode ->getParent();
if(NULL == fatherNode )
{
return NULL;//it is root;
}
}
return fatherNode->getParent();
}
}
return NULL;
} template <typename T>
BiTreeNode<T> *BiTreeNode<T>::getInorderSubsequence() //获取中序后继
{
/*
condition 1: Node has right child.
condition 2: Node hasn't right child,and it is its father left child.
condition 3: Node hasn't right child,and it is its father right child.
*/
/*condition 1*/
if(NULL != this->getRChild())
{
BiTreeNode *tempNode = this->getRChild();
while(NULL != tempNode->getLChild() )
{
tempNode=tempNode->getLChild();
}
return tempNode;
}
/*condition 2*/
else
{
BiTreeNode *fatherNode=this->getParent();
if(NULL == fatherNode)//it is root.
{
return NULL;
}
else if(fatherNode->getLChild() == this)
{
return fatherNode;
}
else
{
while(fatherNode->getParent()->getLChild() !=fatherNode)
{
fatherNode=fatherNode->getParent();
if(NULL == fatherNode)
{
return NULL;//it is root;
}
}
return fatherNode->getParent();
}
}
}
/*-----------------------setdata------------------------*/
template <typename T>
void BiTreeNode<T>::setIndex(int index)
{
m_iIndex = index;
}
template <typename T>
void BiTreeNode<T>::setData(T data)
{
m_tData = data;
}
template <typename T>
void BiTreeNode<T>::setParenet(BiTreeNode *Node)
{
m_pParent = Node;
} template <typename T>
void BiTreeNode<T>::setLChild(BiTreeNode *Node)
{
m_pLeftChild = Node;
} template <typename T>
void BiTreeNode<T>::setRChild(BiTreeNode *Node)
{
m_pRightChild = Node;
} /*-----------------------else------------------------*/
template <typename T>
BiTreeNode<T> *BiTreeNode<T>::NodeSearch(int index)
{
BiTreeNode<T> *tempNode = NULL;
if(m_iIndex == index)
{
return this;
}
if(m_pLeftChild != NULL)
{
tempNode = m_pLeftChild->NodeSearch(index);
if(tempNode != NULL)//match
{
return tempNode;
}
} if(m_pRightChild !=NULL)
{
tempNode = m_pRightChild->NodeSearch(index);
if(tempNode != NULL)// match
{
return tempNode;
}
} return NULL;
} /*statistcal children node heigh(includding me)*/
template <typename T>
int BiTreeNode<T>::NodeChildrenNodeHeigh()
{
int heightLeft = ;
int heightRight =;
if(m_pLeftChild != NULL)
{
heightLeft += m_pLeftChild->NodeChildrenNodeHeigh();
}
if(m_pRightChild != NULL)
{
heightRight += m_pRightChild->NodeChildrenNodeHeigh();
}
if(heightRight > heightLeft)
{
return ++heightRight;
}
else
{
return ++heightLeft;
}
} /*statistcal leaves node(includding me)*/
template <typename T>
int BiTreeNode<T>::NodeLeavesStatistics(int leaves)
{
if(this->m_pLeftChild != NULL)
{
leaves = this->m_pLeftChild->NodeLeavesStatistics(leaves);
}
if(this->m_pRightChild != NULL)
{
leaves = this->m_pRightChild->NodeLeavesStatistics(leaves);
}
if(this->getLChild() == NULL && this->getRChild() == NULL)
{
leaves ++;
}
return leaves;
}
/*statistcal children node(includding me)*/
template <typename T>
int BiTreeNode<T>::NodeChildrenStatistics()
{
int iCnt=;
if(this->m_pLeftChild != NULL)
{
iCnt+=this->m_pLeftChild->NodeChildrenStatistics();
}
if(this->m_pRightChild!= NULL)
{
iCnt+=this->m_pRightChild->NodeChildrenStatistics();
}
iCnt++;
return iCnt;
} template <typename T>
int BiTreeNode<T>::NodeDelete()
{
int Times=;
if(this->m_pLeftChild != NULL)
{
//delete this->getLChild();
Times+=this->m_pLeftChild->NodeDelete();
this->m_pLeftChild =NULL;
}
if(this->m_pRightChild!= NULL)
{
//delete this->getRChild();
Times+=this->m_pRightChild->NodeDelete();
this->m_pRightChild =NULL;
}
Times++;
delete this;
return Times;
}
/*-----------------------traversal------------------------*/
template <typename T>
void BiTreeNode<T>::NodePreorderTraversal()
{
cout<<"Index:"<<this->getIndex()<<";Data:"<<this->getData()<<endl; if(this->getLChild() != NULL)
{
this->getLChild()->NodePreorderTraversal();
} if(this->getRChild() != NULL)
{
this->getRChild()->NodePreorderTraversal();
}
} template <typename T>
void BiTreeNode<T>::NodeInorderTraversal()
{
if(this->getLChild() != NULL)
{
this->getLChild()->NodeInorderTraversal();
} cout<<"Index:"<<this->getIndex()<<";Data:"<<this->getData()<<endl; if(this->getRChild() != NULL)
{
this->getRChild()->NodeInorderTraversal();
}
} template <typename T>
void BiTreeNode<T>::NodeSubsequentTraversal()
{
if(this->getLChild() != NULL)
{
this->getLChild()->NodeSubsequentTraversal();
} if(this->getRChild() != NULL)
{
this->getRChild()->NodeSubsequentTraversal();
} cout<<"Index:"<<this->getIndex()<<";Data:"<<this->getData()<<endl;
} #endif

main.c

#include <iostream>
#include <vector>
#include "BinaryTree.h"
#include "BinarySearchTree.h" using namespace std; int main()
{
/*初始化一个vec向量用于建树*/
vector<int> Vec1;
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
Vec1.push_back();
/*建立一颗搜索二叉树*/
BinarySearchTree<int> BSTree(Vec1);
/*中序遍历*/
BSTree.BSTreeInorderTraversal();
/*排序并按顺序打印*/
vector<int> Vec2 = BSTree.getResult();
for(unsigned int i=;i<Vec2.size();i++)
{
cout<<Vec2[i]<<" ";
}
cout<<endl;
/*获取元素个数*/
cout<<"size:"<<BSTree.getNowSize()<<endl;
cout<<"width:"<<BSTree.getWidth()<<endl;
cout<<"height:"<<BSTree.getHeight()<<endl; /*删除元素*/
// BSTree.deleteMinNode();
// BSTree.deleteMaxNode();
BSTree.deleteNodeByData();
//BSTree.deleteNodeByIndex(50);
Vec2 = BSTree.getResult();
for(unsigned int i=;i<Vec2.size();i++)
{
cout<<Vec2[i]<<" ";
}
cout<<endl;
cout<<"size:"<<BSTree.getNowSize()<<endl; system("pause");
return ;
}

构建二叉树如图所示

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

运行结果:

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

在程序中,主要讲述以下两个重点:

  1. 添加节点
  2. 删除节点

添加节点:

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

先看下,对于二叉搜索树,

删除节点:

数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

上一篇:javaWeb学习总结(10)- EL函数库(2)


下一篇:开源IDE CodeBlocks的下载安装、配置、简单编程