【Caffe学习八】基于Anaconda源码编译安装Caffe

设备信息:Ubuntu18.04,CUDA10.0.130,CUDNN7.3.0,Anaconda(python3.7.1),opencv3.4.0

一. 安装前准备工作:

1. 更新Linux系统软件

sudo apt-get update

2. 安装GitHub依赖包,可以使用git指令从GitHub下载

sudo apt-get install git cmake build-essential

3. 安装Caffe依赖包

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev  libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev liblapack-dev libopenblas-dev
sudo apt-get install python-dev python-opencv
sudo apt_get install libgflags-dev libgoogle-glog-dev liblmdb-dev

4. 源码编译opencv(参考:https://mp.csdn.net/postedit/88639372)

二. Installation

1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT(即/home/usrname)

git clone http s://github.com/weiliu89/caffe.git

cd caffe

2. Modify Makefile.config according to your Caffe installation.

cp Makefile.config.example Makefile.config

3. 打开并修改Makefile.config (a lot of kengs)

vim Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#       You should not set this flag if you will be reading LMDBs with any
#       possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
                -gencode arch=compute_35,code=sm_35 \
                -gencode arch=compute_50,code=sm_50 \
                -gencode arch=compute_52,code=sm_52 \
                -gencode arch=compute_60,code=sm_60 \
                -gencode arch=compute_61,code=sm_61 \
                -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
                # /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                $(ANACONDA_HOME)/include/python3.7m \
                $(ANACONDA_HOME)/lib/python3.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.7m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/ /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @                                                                                                                                                                            

4. 打开并修改Makefile

vim Makefile
# This code is taken from https://github.com/sh1r0/caffe-android-lib
ifeq ($(USE_HDF5), 1)
        LIBRARIES += hdf5_serial_hl hdf5_serial
endif
ifeq ($(USE_OPENCV), 1)
        LIBRARIES += opencv_core opencv_highgui opencv_imgproc opencv_videoio

        ifeq ($(OPENCV_VERSION), 3)
                LIBRARIES += opencv_imgcodecs
        endif

endif
PYTHON_LIBRARIES ?= boost_python3 python3.7m

5. 编译安装Caffe

make all -j8
make test -j8
make runtest -j8

make pycaffe

6. 将Caffe的Python库路径添加到PYTHONPATH环境变量中

vim ~/.bashrc
export CAFFE_ROOT=/data0/zzw/caffe
export PYTHONPATH=$CAFFE_ROOT/python:$PYTHONPATH
source ~/.bashrc

7. 测试Caffe是否安装成功

python 

import caffe        # it works that means your Caffe is successfully installed

三. 测试

参考:https://blog.csdn.net/qq_37643960/article/details/88708177


参考链接:

基于Anaconda的Caffe安装

Python3.5 Anaconda3 Caffe深度学习框架搭建

caffe安装

 

上一篇:caffe中的“Python”层是什么?


下一篇:机器学习的主要编程框架