python操作RabbitMQ(不错)

一、rabbitmq

RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

1.1 安装rabbitmq

RabbitMQ安装

1
2
3
4
5
6
7
8
安装配置epel源
   $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
  
安装erlang
   $ yum -y install erlang
  
安装RabbitMQ
   $ yum -y install rabbitmq-server

注意:service rabbitmq-server start/stop

安装API:

1
2
3
4
5
6
7
8
9
pip install pika
or
easy_install pika
or
源码
or
pycharm
 
https://pypi.python.org/pypi/pika

  

1.3 用python操作rabbitmq

1.3.1 基于Queue实现生产者消费者模型

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading message = Queue.Queue(10) def producer(i):
while True:
message.put(i) def consumer(i):
while True:
msg = message.get() for i in range(12):
t = threading.Thread(target=producer, args=(i,))
t.start() for i in range(10):
t = threading.Thread(target=consumer, args=(i,))
t.start()
python操作RabbitMQ(不错)

1.3.2 rabbitmq实现消息队列

对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

先运行消费者脚本,让它监听队列消息,然后运行生产者脚本,生产者往队列里发消息。然后消费者往队列里取消息。

python操作RabbitMQ(不错)
import pika

# ########################### 消费者 ###########################

connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.queue_declare(queue='abc') # 如果队列没有创建,就创建这个队列 def callback(ch, method, propertities,body):
print(" [x] Received %r" % body) channel.basic_consume(callback,
queue='abc', # 队列名
no_ack=True) # 不通知已经收到,如果连接中断可能消息丢失 print(' [*] Waiting for message. To exit press CTRL+C')
channel.start_consuming()
python操作RabbitMQ(不错)
python操作RabbitMQ(不错)
import pika
# ############################## 生产者 ##############################
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'
))
channel = connection.channel()
channel.queue_declare(queue='abc') # 如果队列没有创建,就创建这个队列
channel.basic_publish(exchange='',
routing_key='abc', # 指定队列的关键字为,这里是队列的名字
body='Hello World!') # 往队列里发的消息内容
print(" [x] Sent 'Hello World!'")
connection.close()
python操作RabbitMQ(不错)

先运行消费者,然后再运行生产者:

python操作RabbitMQ(不错)
'''
打印:
生产者:
[x] Sent 'Hello World!'
消费者:
[*] Waiting for message. To exit press CTRL+C
[x] Received b'Hello World!'
'''
python操作RabbitMQ(不错)

1.4 no-ack=False:rabbitmq消费者连接断了 消息不丢失

rabbitmq支持一种方式:应答。比如我从消息里拿一条消息,如果全处理完,你就不要帮我记着了。如果没处理完,突然断开了,再连接上的时候,消息队列就会重新发消息。

总结:

  • Basic.Ack 发回给 RabbitMQ 以告知,可以将相应 message 从 RabbitMQ 的消息缓存中移除。
  • Basic.Ack 未被 consumer 发回给 RabbitMQ 前出现了异常,RabbitMQ 发现与该 consumer 对应的连接被断开,之后将该 message 以轮询方式发送给其他 consumer (假设存在多个 consumer 订阅同一个 queue)。
  • 在 no_ack=true 的情况下,RabbitMQ 认为 message 一旦被 deliver 出去了,就已被确认了,所以会立即将缓存中的 message 删除。所以在 consumer 异常时会导致消息丢失。
  • 来自 consumer 侧的 Basic.Ack 与 发送给 Producer 侧的 Basic.Ack 没有直接关系

注意:

1)只有在Consumer(消费者)断开连接时,RabbitMQ才会重新发送未经确认的消息。

2)超时的情况并未考虑:无论Consumer需要处理多长时间,RabbitMQ都不会重发消息。

消息不丢失的关键代码:

1)在接收端的callback最后:

channel.basic_ack(delivery_tag=method.delivery_tag)

1
2
3
ack即acknowledge(承认,告知已收到)
也就是消费者每次收到消息,要通知一声:已经收到,如果消费者连接断了,rabbitmq会重新把消息放到队列里,下次消费者可以连接的时候,就能重新收到丢失消息。
A message MUST not be acknowledged morethan once. The receiving peer MUST validate that a non-zero delivery-tag refersto a delivered message, <br>and raise a channel exception if this is not the case.

2)除了callback函数,还要在之前设置接收消息时指定no_ack(默认False):

channel.basic_consume(callback, queue='hello', no_ack=False)

消费者:

python操作RabbitMQ(不错)
import pika

  # ########################### 消费者 ##########################

connection = pika.BlockingConnection(pika.ConnectionParameters(
host='10.211.55.4'))
channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print('ok')
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
python操作RabbitMQ(不错)

消费者断掉连接,再次连接,消息还会收到。

1.5 durable:rabbitmq服务端宕机 消息不丢失

发数据的时候,就说了:我这条数据要持久化保存。

如果rabbitmq服务端机器如果挂掉了,会给这台机器做持久化。如果启动机器后,消息队列还在。

生产者.py:

python操作RabbitMQ(不错)
import pika

# ############################## 生产者 ##############################

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel() # make message persistent
channel.queue_declare(queue='hello', durable=True) channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2, # make message persistent
))
print(" [x] Sent 'Hello World!'")
connection.close()
python操作RabbitMQ(不错)

消费者.py:

python操作RabbitMQ(不错)
import pika

# ########################### 消费者 ###########################

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel() # make message persistent
channel.queue_declare(queue='hello', durable=True) def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print('ok')
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
python操作RabbitMQ(不错)

测试:

1)把生产者.py执行三次。

2)然后在linux上停掉rabbitmq服务,然后再开启rabbitmq服务

1
2
3
4
5
6
[root@localhost ~]# /etc/init.d/rabbitmq-server stop
Stopping rabbitmq-server: rabbitmq-server.
 
[root@localhost ~]# /etc/init.d/rabbitmq-server start
Starting rabbitmq-server: SUCCESS
rabbitmq-server.

3)运行:消费者.py:三条消息都打印了:

1
2
3
4
5
6
7
[*] Waiting for messages. To exit press CTRL+C
 [x] Received b'Hello World!'
ok
 [x] Received b'Hello World!'
ok
 [x] Received b'Hello World!'
ok

1.6 消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

因为默认是跳着取得。第一个消费者取得很快,已经执行到20了,但是第二个消费者只取到13,可能消息执行的顺序就有问题了。

如果多个消费者,如果不想跳着取,就按消息的顺序取,而不是按着自己的间隔了。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding:utf-8 -*-
__author__ = 'WangQiaomei'
import pika # ########################### 消费者 ###########################
connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.137.208'))
channel = connection.channel() # make message persistent
channel.queue_declare(queue='hello1') def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print('ok')
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(callback,
queue='hello1',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
python操作RabbitMQ(不错)

1.7发布订阅

 

发布订阅原理:

1)发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。

2)所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

3)exchange 可以帮你发消息到多个队列!type设为什么值,就把消息发给哪些队列。

发布订阅应用到监控上:

模板就是写上一段脚本,放在服务器上,

客户端每5分钟,从服务端拿到监控模板,根据模板来取数据,

然后把数据结果发步到服务端的redis频道里。

服务端收到数据,1)处理历史记录 2)报警 3)dashboard显示监控信息

服务端有三处一直来订阅服务端频道(一直来收取客户端监控数据)

 

1.7.1  发布给所有绑定队列

exchange type = fanout

exchange 可以帮你发消息到多个队列,type = fanout表示:跟exchange绑定的所有队列,都会收到消息。

python操作RabbitMQ(不错)

发布者:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei
import pika
import sys
# ########################### 发布者 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
print(" [x] Sent %r" % message)
connection.close()
python操作RabbitMQ(不错)

订阅者:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
# ########################### 订阅者 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout')
# 随机创建队列
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
# 绑定
channel.queue_bind(exchange='logs',
queue=queue_name) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r" % body) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming() '''
多次执行这个文件,就会随机生成多个队列。并且exchange都绑定这些队列。
然后发布者只需要给exchange发送消息,然后exchange绑定的多个队列都有这个消息了。订阅者就收到这个消息了。
'''
python操作RabbitMQ(不错)

1.7.2关键字发送

一个队列还可以绑定多个关键字

python操作RabbitMQ(不错)

对一个随机队列,绑定三个关键字

再次执行,对另一个随机队列,只绑定一个关键字。

消费者:每执行一次可以生成一个队列。通过使用命令行传参的方式,来传入队列的关键字。

python操作RabbitMQ(不错)
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue severities :]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1) for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

容易测试的版本:

消费者1:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys # ########################### 消费者1 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True) # 随机生成队列
queue_name = result.method.queue severities ]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1) for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

消费者2:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys # ########################### 消费者2 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True) # 随机生成队列
queue_name = result.method.queue severities ] for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

生产者:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys # ############################## 生产者 ############################## connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') severity = 'info'
message = 'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity,
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close() '''
同时运行消费者1,消费者2,然后修改生产者的关键字,运行生产者。
当生产者:severity = 'info',则消费者1收到消息,消费者2没收到消息
当生产者:severity = 'error',则消费者1、消费者2 都收到消息
'''
python操作RabbitMQ(不错)

1.7.2  模糊匹配

python操作RabbitMQ(不错)

exchange type = topic

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 字符
  • *  表示只能匹配 一个 任意字符
1
2
3
发送者路由值              队列中
old.boy.python          old.*  -- 不匹配
old.boy.python          old.#  -- 匹配

消费者:

python操作RabbitMQ(不错)
#!/usr/bin/env python
import pika
import sys
# ############################## 消费者 ##############################
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue binding_keys = "*.orange.*" for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

生产者:

python操作RabbitMQ(不错)
#!/usr/bin/env python
import pika
import sys
# ############################## 生产者 ##############################
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') # routing_key = 'abc.new.qiaomei.old'
routing_key = 'neworangeold'
message = 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close() '''
#.orange.# 匹配:new.orange.old neworangeold
*.orange.* 匹配:neworangeold,不匹配:new.orange.old
'''
python操作RabbitMQ(不错)

1.8 saltstack原理实现

saltstack:zeromq:放到内存里的,会更快,会基于这个做rcp

openstack:大量使用:rabbitmq

saltstack上有master,有三个队列。,让三个客户端每个人取一个队列的任务

saltstack的原理:

1)发一条命令ifconfig,想让所有nginx主机组的机器,都执行。

2)在master我们可以发命令给exchange,nginx总共有10台服务器,创建10个带有nginx关键字的10个队列,

3)master随机生成队列,md5是一个队列的名字,exchange把命令和md5这个消息推送到nginx关键字的队列里。

4)nginx10台服务器从队列中取出消息,执行命令,并且把主机名和执行的结果返回给这个队列里。

5)master变为消费者,取出队列里的主机名和执行结果,并打印到终端上。

服务器1:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys # ########################### 消费者1 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True) # 随机生成队列
queue_name = result.method.queue severities = ]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1) for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
queue_md5=body.decode().split(",")[1]
hostname = 'nginx1'
channel.queue_declare(queue=queue_md5) # 如果队列没有创建,就创建这个队列
channel.basic_publish(exchange='',
routing_key=queue_md5, # 指定队列的关键字为,这里是队列的名字
body='%s|cmd_result1' %hostname) # 往队列里发的消息内容 channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

服务器2:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys # ########################### 消费者2 ########################### connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True) # 随机生成队列
queue_name = result.method.queue severities = ["nginx"] for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body))
queue_md5=body.decode().split(",")[1]
hostname = 'nginx2'
channel.queue_declare(queue=queue_md5) # 如果队列没有创建,就创建这个队列
channel.basic_publish(exchange='',
routing_key=queue_md5, # 指定队列的关键字为,这里是队列的名字
body='%s|cmd_result2' %hostname) # 往队列里发的消息内容 channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
python操作RabbitMQ(不错)

master:

python操作RabbitMQ(不错)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'WangQiaomei' import pika
import sys
import hashlib # ############################## 生产者 ############################## connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') severity = 'nginx'
m2 = hashlib.md5()
m2.update(severity.encode('utf-8'))
md5_security=m2.hexdigest()
print('md5_security:',md5_security)
message = 'cmd,%s' % md5_security channel.basic_publish(exchange='direct_logs',
routing_key=severity,
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close() #################################3
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.137.208'))
channel = connection.channel() channel.queue_declare(queue=md5_security) # 如果队列没有创建,就创建这个队列 def callback(ch, method, propertities,body):
print(" [x] Received %r" % body) channel.basic_consume(callback,
queue=md5_security, # 队列名
no_ack=True) # 不通知已经收到,如果连接中断消息就丢失 print(' [*] Waiting for message. To exit press CTRL+C')
channel.start_consuming()
python操作RabbitMQ(不错)

打印:

1
2
3
4
5
6
7
8
9
10
11
12
'''
服务器1,和服务器2都打印:
 [*] Waiting for logs. To exit press CTRL+C
 [x] 'nginx':b'cmd,ee434023cf89d7dfb21f63d64f0f9d74'
 
master打印:
md5_security: ee434023cf89d7dfb21f63d64f0f9d74
 [x] Sent 'nginx':'cmd,ee434023cf89d7dfb21f63d64f0f9d74'
 [*] Waiting for message. To exit press CTRL+C
 [x] Received b'nginx2|cmd_result2'
 [x] Received b'nginx1|cmd_result1'
'''
上一篇:Python全栈开发:RabbitMQ/Redis/Memcache/SQLAlchemy


下一篇:java的基础知识运算符