如何使用LIBSVM,从安装到基本实例使用

1.在eclipse上安装libsvm

下载libsvm压缩包解压到本地目录,下载地址http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html

如图:

如何使用LIBSVM,从安装到基本实例使用

2.新建JAVA工程,导入libsvm包及其源码。

  1. 新建JAVA工程及主函数main后,右键工程=>build path=>configure build path,Java Build Path>Libraries>Add External JARs,导入libsvm.jar。

如何使用LIBSVM,从安装到基本实例使用

  2. 关联libsvm源码(方便以后查看源码):点开libsvm.jar=>Source attachment:(None)=>Edit,External location=>External Folder

如何使用LIBSVM,从安装到基本实例使用

  选择libsvm-3.12下java目录,一路OK。

如何使用LIBSVM,从安装到基本实例使用

3.编写libSvm基本代码实例

package SVM;
import libsvm.svm;
import libsvm.svm_model;
import libsvm.svm_node;
import libsvm.svm_parameter;
import libsvm.svm_problem; public class jmain { /**
* @param args
*/
public static void main(String[] args) {
//定义训练集点a{10.0, 10.0} 和 点b{-10.0, -10.0},对应lable为{1.0, -1.0}
svm_node pa0 = new svm_node();
pa0.index = 0;
pa0.value = 176.0;
svm_node pa1 = new svm_node();
pa1.index = 1;
pa1.value = 70.0;
svm_node pb0 = new svm_node();
pb0.index = 0;
pb0.value = 180.0;
svm_node pb1 = new svm_node();
pb1.index = 1;
pb1.value = 80.0;
svm_node pc0 = new svm_node();
pb0.index = 0;
pb0.value = 161.0;
svm_node pc1 = new svm_node();
pb1.index = 1;
pb1.value = 45.0;
svm_node pd0 = new svm_node();
pb0.index = 0;
pb0.value = 163.0;
svm_node pd1 = new svm_node();
pb1.index = 1;
pb1.value = 47.0;
svm_node[] pa = {pa0, pa1}; //点a
svm_node[] pb = {pb0, pb1}; //点b
svm_node[] pc = {pc0, pc1}; //点c
svm_node[] pd = {pd0, pd1}; //点d
svm_node[][] datas = {pa, pb,pc,pd}; //训练集的向量表
double[] lables = {1.0,1.0,2.0,2.0}; //a,b 对应的lable //定义svm_problem对象
svm_problem problem = new svm_problem();
problem.l = 4; //向量个数
problem.x = datas; //训练集向量表
problem.y = lables; //对应的lable数组 //定义svm_parameter对象
svm_parameter param = new svm_parameter();
param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.LINEAR;
param.cache_size = 100;
param.eps = 0.00001;
param.C = 1; //训练SVM分类模型
System.out.println(svm.svm_check_parameter(problem, param)); //如果参数没有问题,则svm.svm_check_parameter()函数返回null,否则返回error描述。
svm_model model = svm.svm_train(problem, param); //svm.svm_train()训练出SVM分类模型 //定义测试数据点c
svm_node pe0 = new svm_node();
pc0.index = 0;
pc0.value = 165.0;
svm_node pe1 = new svm_node();
pc1.index = 1;
pc1.value = 50.0;
svm_node[] pe = {pe0, pe1}; //预测测试数据的lable
System.out.println(svm.svm_predict(model, pe));
}
}

代码说明以及简单的svm介绍如下:

1.libSvm可以用来分类,大概的原理是先使用svm对已经知道的数据进行训练得出训练模型,然后通过训练模型对要分析的数据进行预测,得出分类。

2.例子:

一个班级里面有两个男生(男生1、男生2),两个女生(女生1、女生2),其中

男生1 身高:176cm 体重:70kg;
男生2 身高:180cm 体重:80kg;

女生1 身高:161cm 体重:45kg;
女生2 身高:163cm 体重:47kg;

这些是已经知道的数据,使用这些数据建立训练模型,通过训练模型可以通过给出的身高和体重分类是男生还是女生

1)  先建立训练模型

数据格式为:

<lable1>
 1:特征1       2:特征2       3:特征3 ...

<lable2>  1:特征1       2:特征2       3:特征3 ...

以下建立班级男女生训练数据:

1:代表男生 2:代表女生
------------------------------------------此为标签

数据:

Label index1:value1 index2:value2

1 1:176 2:70

1 1:180 2:80

2 1:161 2:45

2 1:163 2:47

开始训练:使用libsvm的函数svm.svm_train

2) 
测试数据

如进来了一个数据165 50

使用libSvm自带的函数svm_predict来预测

3)  输出结果为

null

*

  • optimization
    finished, #iter = 1

nu =
3.474876641879213E-5

  • obj =
    -6.949753283758427E-5, rho = 1.0

nSV = 2,
nBSV = 0

Total nSV
= 2

2.0

其中:

Null表示输入参数正确

#iter为迭代次数

nu是你选择的核函数类型的参数

  • obj为SVM文件转换为的二次规划求解得到的最小值

rho为判决函数的偏置项b

nSV为标准支持向量个数(0<a[i]<c)

nBSV为边界上的支持向量个数(a[i]=c)

Total nSV为支持向量总个数(对于两类来说,因为只有一个分类模型Total nSV = nSV,但是对于多类,这个是各个分类模型的nSV之和)

2.0表示预测身高165,体重50kg的是女生

上一篇:20165223 学习基础和C语言基础调查


下一篇:UITextField实现左侧空出一定的边距