树是数据结构中常用到的一种结构,其实现较栈和队稍为复杂一些。若树中的所有节点的孩子节点数量不超过2个,则该为一个二叉树。二叉树可用于查找和排序等。二叉树的主要操作有:建树,遍历等。遍历是树中的一个最为重要的操作,可分为深度优先遍历和广度优先遍历。其中,尝试优先遍历又可分为先序遍历,中序遍历和后序遍历。深度优先遍历可使用递规来实现,也可以用栈和队通过循环实现。后序的非递规遍历,比其他两种遍历稍为复杂些。
下面给出一个python实现二叉树的例子:
class Node(object):
def __init__(self, data = -1, lchild = None, rchild = None):
self.data = data
self.lchild = lchild
self.rchild = rchild class BinaryTree(object):
def __init__(self):
self.root = Node() def add(self, data):
node = Node(data)
if self.isEmpty():
self.root = node
else:
tree_node = self.root
queue = []
queue.append(self.root) while queue:
tree_node = queue.pop(0)
if tree_node.lchild == None:
tree_node.lchild = node
return
elif tree_node.rchild == None:
tree_node.rchild = node
return
else:
queue.append(tree_node.lchild)
queue.append(tree_node.rchild) def pre_order(self, start):
node = start
if node == None:
return print node.data,
if node.lchild == None and node.rchild == None:
return
self.pre_order(node.lchild)
self.pre_order(node.rchild) def pre_order_loop(self):
if self.isEmpty():
return stack = []
node = self.root
while node or stack:
while node:
print node.data,
stack.append(node)
node = node.lchild
if stack:
node = stack.pop()
node = node.rchild def in_order(self, start):
node = start
if node == None:
return
self.in_order(node.lchild)
print node.data,
self.in_order(node.rchild) def in_order_loop(self):
if self.isEmpty():
returen stack = []
node = self.root
while node or stack:
while node:
stack.append(node)
node = node.lchild if stack:
node = stack.pop()
print node.data,
node = node.rchild def post_order(self, start):
node = start
if node == None:
return
self.post_order(node.lchild)
self.post_order(node.rchild)
print node.data, def post_order_loop(self):
if self.isEmpty():
return node = self.root
stack = []
queue = []
queue.append(node)
while queue:
node = queue.pop()
if node.lchild:
queue.append(node.lchild)
if node.rchild:
queue.append(node.rchild)
stack.append(node)
while stack:
print stack.pop().data, #if lchild and rchild are None or lchild and rchild are printed, print the parent node node and pop out of the stack
#else lchild and rchild push into the stack
def post_order_loop1(self):
if self.isEmpty():
return stack = []
top = -1
node = self.root
stack.append(node)
#we need to recognize the last printed node
top += 1
pre = None
while stack:
node = stack[-1]
if node.lchild is None and node.rchild is None:
print node.data,
pre = node
top -= 1
elif not pre and (node.lchild == pre or node.rchild == pre):
print node.data,
pre = node
top -= 1
else:
if node.rchild:
if top < len(stack)-1:
stack[top] = node.rchild
else:
stack.append(node.rchild)
if node.lchild:
if top < len(stack)-1:
stack[top] = node.lchild
else:
stack.append(node.lchild) def level_order(self):
node = self.root
if node == None:
return queue = []
queue.append(node) while queue:
node = queue.pop(0)
print node.data,
if node.rchild:
queue.append(node.rchild)
if node.lchild:
queue.append(node.lchild)
print def isEmpty(self):
return True if self.root.data == -1 else False if __name__ == '__main__':
arr = []
for i in range(10):
arr.append(i)
print arr tree = BinaryTree()
for i in arr:
tree.add(i)
print 'level_order:'
tree.level_order()
print 'pre order:'
tree.pre_order(tree.root)
print '\npre order loop:'
tree.pre_order_loop()
print '\nin_order:'
tree.in_order(tree.root)
print '\nin_order loop:'
tree.in_order_loop()
print '\npost_order:'
tree.post_order(tree.root)
print '\npost_order_loop:'
tree.post_order_loop()
print '\npost_order_loop1:'
tree.post_order_loop1()