hadoop实现倒排索引
本文用hadoop实现倒排索引算法,用基本的分两步完成,不使用combine
第一步
读入文档,统计文档中各个单词的个数,与word count类似,但这里把word-filename组合起来作为一个key,并把中间结果写到磁盘中
InverseIndexStepTwo.java
package postlisting;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.StringUtils;
import java.io.IOException;
/**
* 倒排索引步骤一,先做word count,不过现在的key是word-filename
*/
public class InverseIndexStepOne {
public static class StepOneMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
// 切分出各个单词
String[] fields = line.split(" ");
// 获取文件切片
FileSplit inputsplit = (FileSplit)context.getInputSplit();
// 获取文件名
String filename = inputsplit.getPath().getName();
// 计数hello-->a.txt 1
for(String field: fields){
context.write(new Text(field+"-->"+filename), new LongWritable(1));
}
}
}
public static class StepOneReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long counter = 0;
for (LongWritable value: values){
counter += value.get();
}
context.write(key, new LongWritable(counter));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(InverseIndexStepOne.class);
job.setMapperClass(StepOneMapper.class);
job.setReducerClass(StepOneReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 检查输出文件夹是否已存在,如果存在先删除
// 本地测试
Path output = new Path("res/words/output/step1");
FileSystem fs = FileSystem.get(conf);
if(fs.exists(output)){
fs.delete(output, true);
}
FileInputFormat.setInputPaths(job, new Path("res/words/input/"));
FileOutputFormat.setOutputPath(job, output);
System.out.println(job.waitForCompletion(true));
}
}
输出结果
hello-->a.txt 2
hello-->b.txt 2
hello-->c.txt 2
jerry-->a.txt 1
jerry-->b.txt 3
jerry-->c.txt 1
tom-->a.txt 3
tom-->b.txt 1
tom-->c.txt 1
第二步
读取上一步的中间结果,解析并合并
InverseIndexStepOne.java
package postlisting;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class InverseIndexStepTwo {
public static class StepTwoMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
// hello-->a.txt 1
String[] fields = line.split("\t");
String[] wordAndFileName = fields[0].split("-->");
String word = wordAndFileName[0];
String fileName = wordAndFileName[1];
long count = Long.parseLong(fields[1]);
// <hello, a.txt-->3>
context.write(new Text(word), new Text(fileName + "-->" + count));
}
}
public static class StepTwoReducer extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
// 拿到的数据<hello, a.txt-->3, a.txt-->4,...>
StringBuilder result = new StringBuilder();
for (Text value:values){
result.append(" ").append(value);
}
context.write(key, new Text(result.toString()));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(InverseIndexStepTwo.class);
job.setMapperClass(StepTwoMapper.class);
job.setReducerClass(StepTwoReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 检查输出文件夹是否已存在,如果存在先删除
Path output = new Path("res/words/output/step2");
FileSystem fs = FileSystem.get(conf);
if(fs.exists(output)){
fs.delete(output, true);
}
FileInputFormat.setInputPaths(job, new Path("res/words/output/step1/"));
FileOutputFormat.setOutputPath(job, output);
System.out.println(job.waitForCompletion(true));
}
}
输出结果
hello c.txt-->2 b.txt-->2 a.txt-->2
jerry c.txt-->1 b.txt-->3 a.txt-->1
tom c.txt-->1 b.txt-->1 a.txt-->3
小结
虽然用combine可以节省代码,但感觉分开写更加灵活,写个shell脚本组织一下就好,Map Reduce的强大之处也在与它的*组合。