hdu 5753 Permutation Bo

这里是一个比较简单的问题:考虑每个数对和的贡献。先考虑数列两端的值,两端的摆放的值总计有2种,比如左端:0,大,小;0,小,大;有1/2的贡献度。右端同理。

中间的书总计有6种可能。小,中,大。其中有两种对答案有贡献,即1/3的贡献度。加和计算可得到答案。

Permutation Bo

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 693    Accepted Submission(s): 421
Special Judge

Problem Description
There are two sequences h1∼hn and c1∼cn. h1∼hn is a permutation of 1∼n. particularly, h0=hn+1=0.

We define the expression [condition] is 1 when condition is True,is 0 when condition is False.

Define the function f(h)=∑ni=1ci[hi>hi−1  and  hi>hi+1]

Bo have gotten the value of c1∼cn, and he wants to know the expected value of f(h).

 
Input
This problem has multi test cases(no more than 12).

For each test case, the first line contains a non-negative integer n(1≤n≤1000), second line contains n non-negative integer ci(0≤ci≤1000).

 
Output
For each test cases print a decimal - the expectation of f(h).

If the absolute error between your answer and the standard answer is no more than 10−4, your solution will be accepted.

 
Sample Input
4
3 2 4 5
5
3 5 99 32 12
 
Sample Output
6.000000
52.833333
 
Author
绍兴一中
 
#include<iostream>
#include<stdio.h>
using namespace std;
int a[];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=; i<n; i++)
{
scanf("%d",a+i);
}
if(n==)
{
printf("%.6lf\n",(a[]+0.0));
continue;
}
if(n==)
{
printf("%.6lf\n",(a[]+0.0+a[])/);
continue;
}
double ans=0.0;
ans=(a[]+0.0+a[n-]+0.0);
ans/=;
double tmp=0.0;
for(int i=; i<n-; i++)
{
tmp+=(a[i]+0.0);
}
tmp/=;
ans+=tmp;
printf("%.6lf\n",ans); }
return ; }
上一篇:酷酷的jQuery classicAccordion 手风琴


下一篇:commons-logging \ log4j \ slf4j 之间的关系