HNOI 2009 无归岛 题解

题目传送门

题目大意: 求一棵仙人掌的最大独立集。

题解

这个题面真的骚……总之就是想告诉你这张图是一个大环上面套着若干个小三元环,也就是仙人掌。

那么就是一个裸的仙人掌最大独立集了,甚至不用考虑非环边,因为整张图没有一条边不在环里。

这个可以利用 dpdpdp 解决:设 f[x][0/1]f[x][0/1]f[x][0/1] 表示 xxx 点选或不选,xxx 这棵子树的最大值。对于一个环,先把除了起点之外的所有点 dpdpdp 完,然后再固定环上某一个点的状态,跑两次 dpdpdp,取整个环的贡献的最大值放到起点上即可。

如果有非环边,就直接转移即可。(当然这道题用不到)

代码如下:

#include <cstdio>
#define maxn 200010
#define inf 999999999

int n,m;
struct edge{int y,next;};
edge e[maxn<<1];
int first[maxn],len=0;
void buildroad(int x,int y)
{
	e[++len]=(edge){y,first[x]};
	first[x]=len;
}
int f[maxn][2],fa[maxn],dfn[maxn],id=0;
int max(int x,int y){return x>y?x:y;}
void dp(int x,int y)
{
	int a=-inf,b=f[y][1],c,d;
	//ab记录前一个点不选和选的最大值,cd求当前点的
	//这里固定环尾的y,先强制选y
	for(int i=fa[y];i!=x;i=fa[i])
	c=f[i][0]+max(a,b),d=f[i][1]+a,a=c,b=d;
	int p=a; a=f[y][0];b=-inf;//强制不选y
	for(int i=fa[y];i!=x;i=fa[i])
	c=f[i][0]+max(a,b),d=f[i][1]+a,a=c,b=d;
	f[x][0]+=max(p,max(a,b)),f[x][1]+=a;
	//注意这里的更新,上面的循环只跑到了x的前一个点
}
void dfs(int x)
{
	dfn[x]=++id;
	for(int i=first[x];i;i=e[i].next)
	if(!dfn[e[i].y])fa[e[i].y]=x,dfs(e[i].y);
	for(int i=first[x];i;i=e[i].next)
	if(fa[e[i].y]!=x&&dfn[e[i].y]>dfn[x])dp(x,e[i].y);
}

int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1,x,y;i<=m;i++)
	scanf("%d %d",&x,&y),buildroad(x,y),buildroad(y,x);
	for(int i=1;i<=n;i++)scanf("%d",&f[i][1]);
	dfs(1);
	printf("%d",(f[1][1]>f[1][0]?f[1][1]:f[1][0]));
}
上一篇:【STM32F429】第4章 RL-TCPnet V7.x网络协议栈简介


下一篇:luogu P4437 [HNOI/AHOI2018]排列