class Solution: def bestSeqAtIndex(self, height: List[int], weight: List[int]) -> int: hei_wei = [] for idx, hei in enumerate(height): hei_wei.append((hei, weight[idx])) hei_wei.sort(key=lambda x:x[0]) index_pos = collections.defaultdict(list) index_pos[0] = [(0, 0)] for hei, wei in hei_wei: found = False for key in sorted(index_pos.keys(), reverse=True): for value in index_pos[key]: if hei > value[0] and wei > value[1]: # print(key) index_pos[key+1].append((hei, wei)) found = True break if found: break return sorted(index_pos.keys(), reverse=True)[0]
进一步优化,其实默认按height顺序给weight排序,然后遍历出最深的长度
hei_wei = [] for idx, hei in enumerate(height): hei_wei.append(weight[idx]) hei_wei.sort() print(hei_wei) index_pos = {} index_pos[0] = 0 # index_pos = sorted(index_pos) for wei in hei_wei: for key in sorted(index_pos.keys(), reverse=True): if wei > index_pos[key]: if key+1 not in index_pos: index_pos[key+1] = wei break print(index_pos) return sorted(index_pos.keys(), reverse=True)[0]
然后就执行错误。猜想这个题有个巨大的坑就是相同的height可能有不同的weight。所以在按照height排序的时候,碰到相同的height的时候,weight按照降序排序,就不会把相同的height叠加到叠罗汉中
class Solution: def bestSeqAtIndex(self, height, weight): peoples = [] for i in range(len(height)): peoples.append((height[i], weight[i])) print(peoples) # 按照height排序,相同的height,weight按照降序排序 peoples.sort(key=lambda x: [x[0], -x[1]]) # 剩下的就是在序列中找最长子序列问题 weights = [people[1] for people in peoples] print(weights) # index_pos = collections.defaultdict(list) max_num = max(weights) + 1 index_pos = {} index_pos[0] = 0 # for weight in weights: for key in sorted(index_pos.keys(), reverse=True): if weight > index_pos[key]: # print(key) index_pos[key + 1] = min(weight, index_pos.get(key + 1, max_num)) break # return sorted(index_pos.keys(), reverse=True)[0]