题目链接:BZOJ - 1070
题目分析
首先想到拆点,把每个技术人员拆成 n 个点,从某个技术人员拆出的第 i 个点,向某辆车连边,表示这是这个技术人员修的倒数第 i 辆车。那么这一次修车对整个答案的贡献就是,i * Time[j][k]。 j 是车的编号,k 是技术人员编号。因为这辆车以及之后这个人要修的车的等待时间都增加了 Time[j][k], 所以包括这辆车在内一共有 i 辆车的等待时间加上了这次修车的时间。这样倒着考虑就可以用边的费用很简便的表示修车使所有人增加的时间了。从 S 到所有技术人员拆出的所有点连边,容量 1 , 费用 0 ;从每辆车向 T 连边,容量 1 ,费用 0 。
最后跑一边最小费用最大流就是所有车等待时间的和。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <queue> using namespace std; const int MaxN = 1000 + 5, MaxM = 100000 + 5, INF = 999999999; int n, m, S, T, Ans;
int Time[60 + 5][9 + 5], d[MaxN]; bool Used[MaxN]; queue<int> Q; inline int gmin(int a, int b) {return a < b ? a : b;}
inline int gmax(int a, int b) {return a > b ? a : b;} struct Edge
{
int u, v, w, Cost;
Edge *Next, *Other;
} E[MaxM], *P = E, *Point[MaxN], *Pre[MaxN]; inline void AddEdge(int x, int y, int z, int Ct) {
Edge *Q = ++P; ++P;
P -> u = x; P -> v = y; P -> w = z; P -> Cost = Ct;
P -> Next = Point[x]; Point[x] = P; P -> Other = Q;
Q -> u = y; Q -> v = x; Q -> w = 0; Q -> Cost = -Ct;
Q -> Next = Point[y]; Point[y] = Q; Q -> Other = P;
} bool Found() {
memset(d, 0x7f, sizeof(d));
memset(Used, 0, sizeof(Used));
d[S] = 0; Used[S] = true; Q.push(S);
while (!Q.empty()) {
int x = Q.front();
Used[x] = false;
Q.pop();
for (Edge *j = Point[x]; j; j = j -> Next) {
if (j -> w && d[j -> v] > d[x] + j -> Cost) {
d[j -> v] = d[x] + j -> Cost;
Pre[j -> v] = j;
if (!Used[j -> v]) {
Used[j -> v] = true;
Q.push(j -> v);
}
}
}
}
if (d[T] < INF) return true;
return false;
} void Augment() {
int Flow;
Flow = INF;
for (Edge *j = Pre[T]; j; j = Pre[j -> u]) Flow = gmin(Flow, j -> w);
for (Edge *j = Pre[T]; j; j = Pre[j -> u]) {
j -> w -= Flow;
j -> Other -> w += Flow;
}
Ans += Flow * d[T];
} int main()
{
scanf("%d%d", &m, &n);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &Time[i][j]);
}
}
S = n * m + n + 1; T = S + 1;
for (int i = 1; i <= n * m; ++i) AddEdge(S, i, 1, 0);
for (int i = n * m + 1; i <= n * m + n; ++i) AddEdge(i, T, 1, 0);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
for (int k = 1; k <= n; ++k) {
AddEdge((i - 1) * n + j, n * m + k, 1, j * Time[k][i]);
}
}
}
Ans = 0;
while (Found()) Augment();
printf("%.2lf\n", (double)Ans / (double)n);
return 0;
}