Flume+Kafka+Storm+Hbase+HDSF+Poi整合
需求:
针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据。
举例:这个网站www.hongten.com(当然这是一个我虚拟的电商网站),用户在这个网站里面可以有很多行为,比如注册,登录,查看,点击,双击,购买东西,加入购物车,添加记录,修改记录,删除记录,评论,登出等一系列我们熟悉的操作。这些操作都被记录在日志信息里面。我们要对日志信息进行分析。
本文中,我们对购买东西和加入购物车两个行为进行分析。然后生成相应的报表,这样我们可以通过报表查看用户在什么时候喜欢购买东西,什么时候喜欢加入购物车,从而,在相应的时间采取行动,激烈用户购买东西,推荐商品给用户加入购物车(加入购物车,这属于潜在购买用户)。
毕竟网站盈利才是我们希望达到的目的,对吧。
1.抽象用户行为
// 用户的action
public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" };
2.日志格式定义
115.19.62.102 海南 2018-12-20 1545286960749 1735787074662918890 www.hongten.com Edit
27.177.45.84 * 2018-12-20 1545286962255 6667636903937987930 www.hongten.com Delete
176.54.120.96 宁夏 2018-12-20 1545286962256 6988408478348165495 www.hongten.com Comment
175.117.33.187 辽宁 2018-12-20 1545286962257 8411202446705338969 www.hongten.com Shopping_Car
17.67.62.213 天津 2018-12-20 1545286962258 7787584752786413943 www.hongten.com Add
137.81.41.9 海南 2018-12-20 1545286962259 6218367085234099455 www.hongten.com Shopping_Car
125.187.107.57 山东 2018-12-20 1545286962260 3358658811146151155 www.hongten.com Double_Click
104.167.205.87 内蒙 2018-12-20 1545286962261 2303468282544965471 www.hongten.com Shopping_Car
64.106.149.83 河南 2018-12-20 1545286962262 8422202443986582525 www.hongten.com Delete
138.22.156.183 浙江 2018-12-20 1545286962263 7649154147863130337 www.hongten.com Shopping_Car
41.216.103.31 河北 2018-12-20 1545286962264 6785302169446728008 www.hongten.com Shopping_Car
132.144.93.20 广东 2018-12-20 1545286962265 6444575166009004406 www.hongten.com Add
日志格式:
//log fromat
String log = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action;
3.系统架构
4.报表样式
由于我采用的是随机生成数据,所有,我们看到的结果呈现线性增长
这里我只是实现了一个小时的报表,当然,也可以做一天,一个季度,全年,三年,五年的报表,可以根据实际需求实现即可。
5.组件分布情况
我总共搭建了4个节点node1,node2,node3,node4(注: 4个节点上面都要有JDK)
Zookeeper安装在node1,node2,nod3
Hadoop集群在node1,node2,nod3,node4
Hbase集群在node1,node2,nod3,node4
Flume安装在node2
Kafka安装在node1,node2,node3
Storm安装在node1,node2,node3
6.具体实现
6.1.配置Flume
--从node2
cd flumedir vi flume2kafka --node2配置如下
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = node2
a1.sources.r1.port = 41414 # Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = all_my_log
a1.sinks.k1.brokerList = node1:9092,node2:9092,node3:9092
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.batchSize = 20 # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000000
a1.channels.c1.transactionCapacity = 10000 # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1 :wq
6.2.启动Zookeeper
--关闭防火墙node1,node2,node3,node4
service iptables stop --启动Zookeeper,在node1,node2,node3
zkServer.sh start
6.3.启动Kafka
--启动kafka
--分别进入node1,node2,node3
cd /root/kafka/kafka_2.10-0.8.2.2
./start-kafka.sh
6.4.启动Flume服务
--进入node2,启动
cd /root/flumedir
flume-ng agent -n a1 -c conf -f flume2kafka -Dflume.root.logger=DEBUG,console
6.5.产生日志信息并写入到Flume
运行java 代码,产生日志信息并写入到Flume服务器
package com.b510.big.data.flume.client; import java.nio.charset.Charset;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Random;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit; import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.api.RpcClient;
import org.apache.flume.api.RpcClientFactory;
import org.apache.flume.event.EventBuilder; /**
* @author Hongten
*
* 功能: 模拟产生用户日志信息,并且向Flume发送数据
*/
public class FlumeClient { public static void main(String[] args) {
ExecutorService exec = Executors.newCachedThreadPool();
exec.execute(new GenerateDataAndSend2Flume()); exec.shutdown();
} } class GenerateDataAndSend2Flume implements Runnable { FlumeRPCClient flumeRPCClient;
static Random random = new Random(); GenerateDataAndSend2Flume() {
// 初始化RPC客户端
flumeRPCClient = new FlumeRPCClient();
flumeRPCClient.init(Common.FLUME_HOST_NAME, Common.FLUME_PORT);
} @Override
public void run() {
while (true) {
Date date = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMM);
String d = simpleDateFormat.format(date);
Long timestamp = new Date().getTime();
// ip地址生成
String ip = random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER);
// ip地址对应的address(这里是为了构造数据,并没有按照真实的ip地址,找到对应的address)
String address = Common.ADDRESS[random.nextInt(Common.ADDRESS.length)]; Long userid = Math.abs(random.nextLong());
String action = Common.USER_ACTION[random.nextInt(Common.USER_ACTION.length)];
// 日志信息构造
// example : 199.80.45.117 云南 2018-12-20 1545285957720 3086250439781555145 www.hongten.com Buy
String data = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action;
//System.out.println(data); // 往Flume发送数据
flumeRPCClient.sendData2Flume(data); try {
TimeUnit.MICROSECONDS.sleep(random.nextInt(1000));
} catch (InterruptedException e) {
flumeRPCClient.cleanUp();
System.out.println("interrupted exception : " + e);
}
}
}
} class FlumeRPCClient { private RpcClient client;
private String hostname;
private int port; public void init(String hostname, int port) {
this.hostname = hostname;
this.port = port;
this.client = getRpcClient(hostname, port);
} public void sendData2Flume(String data) {
Event event = EventBuilder.withBody(data, Charset.forName(Common.CHAR_FORMAT)); try {
client.append(event);
} catch (EventDeliveryException e) {
cleanUp();
client = null;
client = getRpcClient(hostname, port);
}
} public RpcClient getRpcClient(String hostname, int port) {
return RpcClientFactory.getDefaultInstance(hostname, port);
} public void cleanUp() {
// Close the RPC connection
client.close();
}
} // 所有的常量定义
class Common {
public static final String CHAR_FORMAT = "UTF-8"; public static final String DATE_FORMAT_YYYYDDMM = "yyyy-MM-dd"; // this is a test web site
public static final String WEB_SITE = "www.hongten.com"; // 用户的action
public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" }; public static final int MAX_IP_NUMBER = 224;
// ip所对应的地址
public static String[] ADDRESS = { "北京", "天津", "上海", "广东", "重庆", "河北", "山东", "河南", "云南", "山西", "甘肃", "安徽", "福建", "黑龙江", "海南", "四川", "贵州", "宁夏", "*", "湖北", "湖南", "山西", "辽宁", "吉林", "江苏", "浙江", "青海", "江西", "*", "内蒙", "广西", "香港", "澳门", "*", }; // Flume conf
public static final String FLUME_HOST_NAME = "node2";
public static final int FLUME_PORT = 41414; }
6.6.监听Kafka
--进入node3,启动kafka消费者
cd /home/kafka-2.10/bin
./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic all_my_log
运行效果:
168.208.193.207 安徽 2018-12-20 1545287646527 5462770148222682599 www.hongten.com Login
103.143.79.127 * 2018-12-20 1545287646529 3389475301916412717 www.hongten.com Login
111.208.80.39 山东 2018-12-20 1545287646531 535601622597096753 www.hongten.com Shopping_Car
105.30.86.46 四川 2018-12-20 1545287646532 7825340079790811845 www.hongten.com Login
205.55.33.74 * 2018-12-20 1545287646533 4228838365367235561 www.hongten.com Logout
34.44.60.134 安徽 2018-12-20 1545287646536 702584874247456732 www.hongten.com Double_Click
154.169.15.145 广东 2018-12-20 1545287646537 1683351753576425036 www.hongten.com View
126.28.192.28 湖南 2018-12-20 1545287646538 8319814684518483148 www.hongten.com Edit
5.140.156.73 * 2018-12-20 1545287646539 7432409906375230025 www.hongten.com Logout
72.175.210.95 * 2018-12-20 1545287646540 5233707593244910849 www.hongten.com View
121.25.190.25 广西 2018-12-20 1545287646541 268200251881841673 www.hongten.com Buy
6.7.在Kafka创建Topic
--进入node1,创建一个topic:filtered_log
--设置3个partitions
--replication-factor=3
./kafka-topics.sh --zookeeper node1,node2,node3 --create --topic filtered_log --partitions 3 --replication-factor 3
6.8.Storm清洗数据
- Storm从Kafka消费数据
- Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买)
- Storm把筛选的数据放入到Kafka
package com.b510.big.data.storm.process; import java.util.ArrayList;
import java.util.List;
import java.util.Properties; import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import storm.kafka.bolt.KafkaBolt;
import storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
import storm.kafka.bolt.selector.DefaultTopicSelector;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class LogFilterTopology { public static void main(String[] args) { ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM);
//Spout从'filtered_log' topic里面获取数据
SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.ALL_MY_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID);
List<String> zkServers = new ArrayList<>();
for (String host : zkHosts.brokerZkStr.split(",")) {
zkServers.add(host.split(":")[0]);
} spoutConfig.zkServers = zkServers;
spoutConfig.zkPort = Common.ZOOKEEPER_PORT;
spoutConfig.forceFromStart = true;
spoutConfig.socketTimeoutMs = 60 * 60 * 1000;
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); // 创建KafkaSpout
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig); TopologyBuilder builder = new TopologyBuilder();
// Storm从Kafka消费数据
builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3);
// Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买)
builder.setBolt(Common.FILTER_BOLT, new FilterBolt(), 8).shuffleGrouping(Common.KAFKA_SPOUT); // 创建KafkaBolt
@SuppressWarnings({ "unchecked", "rawtypes" })
KafkaBolt kafkaBolt = new KafkaBolt().withTopicSelector(new DefaultTopicSelector(Common.FILTERED_LOG_TOPIC)).withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper()); // Storm把筛选的数据放入到Kafka
builder.setBolt(Common.KAFKA_BOLT, kafkaBolt, 2).shuffleGrouping(Common.FILTER_BOLT); Properties props = new Properties();
props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST);
props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS);
props.put("serializer.class", Common.STORM_SERILIZER_CLASS); Config conf = new Config();
conf.put("kafka.broker.properties", props); conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers); if (args == null || args.length == 0) {
// 本地方式运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology());
} else {
// 集群方式运行
conf.setNumWorkers(3);
try {
StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException e) {
System.out.println("error : " + e);
}
}
}
} class FilterBolt extends BaseBasicBolt { private static final long serialVersionUID = 1L; @Override
public void execute(Tuple input, BasicOutputCollector collector) {
String logStr = input.getString(0);
// 只针对我们感兴趣的关键字进行过滤
// 这里我们过滤包含'Buy', 'Shopping_Car'的日志信息
if (logStr.contains(Common.KEY_WORD_BUY) || logStr.contains(Common.KEY_WORD_SHOPPING_CAR)) {
collector.emit(new Values(logStr));
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields(FieldNameBasedTupleToKafkaMapper.BOLT_MESSAGE));
}
} class Common {
public static final String ALL_MY_LOG_TOPIC = "all_my_log";
public static final String FILTERED_LOG_TOPIC = "filtered_log"; public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss";
public static final String DATE_FORMAT_HHMMSS = "HHmmss";
public static final String DATE_FORMAT_HHMMSS_DEFAULT_VALUE = "000001"; public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888";
public static final int ZOOKEEPER_PORT = 2181;
public static final String ZOOKEEPER_QUORUM = "node1:" + ZOOKEEPER_PORT + ",node2:" + ZOOKEEPER_PORT + ",node3:" + ZOOKEEPER_PORT + "";
public static final String ZOOKEEPER_ROOT = "/MyKafka";
public static final String ZOOKEEPER_ID = "MyTrack"; public static final String KAFKA_SPOUT = "kafkaSpout";
public static final String FILTER_BOLT = "filterBolt";
public static final String PROCESS_BOLT = "processBolt";
public static final String HBASE_BOLT = "hbaseBolt";
public static final String KAFKA_BOLT = "kafkaBolt"; // Storm Conf
public static final String STORM_METADATA_BROKER_LIST = "node1:9092,node2:9092,node3:9092";
public static final String STORM_REQUEST_REQUIRED_ACKS = "1";
public static final String STORM_SERILIZER_CLASS = "kafka.serializer.StringEncoder"; // key word
public static final String KEY_WORD_BUY = "Buy";
public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car"; //hbase
public static final String TABLE_USER_ACTION = "t_user_actions";
public static final String COLUMN_FAMILY = "cf";
//间隔多少秒写入Hbase一次
public static final int WRITE_RECORD_TO_TABLE_PER_SECOND = 1;
public static final int TABLE_MAX_VERSION = (60/WRITE_RECORD_TO_TABLE_PER_SECOND) * 60 * 24;
}
6.9.监听Kafka
--进入node3,启动kafka消费者
cd /home/kafka-2.10/bin
./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic filtered_log
效果:
87.26.135.185 黑龙江 2018-12-20 1545290594658 7290881731606227972 www.hongten.com Shopping_Car
60.96.96.38 青海 2018-12-20 1545290594687 6935901257286057015 www.hongten.com Shopping_Car
43.159.110.193 江苏 2018-12-20 1545290594727 7096698224110515553 www.hongten.com Shopping_Car
21.103.139.11 山西 2018-12-20 1545290594693 7805867078876194442 www.hongten.com Shopping_Car
139.51.213.184 广东 2018-12-20 1545290594729 8048796865619113514 www.hongten.com Buy
58.213.148.89 河北 2018-12-20 1545290594708 5176551342435592748 www.hongten.com Buy
36.205.221.116 湖南 2018-12-20 1545290594715 4484717918039766421 www.hongten.com Shopping_Car
135.194.103.53 北京 2018-12-20 1545290594769 4833011508087432349 www.hongten.com Shopping_Car
180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy
167.71.65.70 山西 2018-12-20 1545290594790 275898530145861990 www.hongten.com Buy
125.51.21.199 宁夏 2018-12-20 1545290594814 3613499600574777198 www.hongten.com Buy
6.10.Storm再次消费Kafka数据处理后保存数据到Hbase
- Storm再次从Kafka消费数据
- Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数)
- Storm将数据写入到Hbase
package com.b510.big.data.storm.process; import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Map;
import java.util.Properties; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HConnection;
import org.apache.hadoop.hbase.client.HConnectionManager;
import org.apache.hadoop.hbase.client.HTableInterface;
import org.apache.hadoop.hbase.client.Put; import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.IBasicBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class LogProcessTopology { public static void main(String[] args) { ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM);
//Spout从'filtered_log' topic里面获取数据
SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.FILTERED_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID);
List<String> zkServers = new ArrayList<>();
for (String host : zkHosts.brokerZkStr.split(",")) {
zkServers.add(host.split(":")[0]);
} spoutConfig.zkServers = zkServers;
spoutConfig.zkPort = Common.ZOOKEEPER_PORT;
spoutConfig.forceFromStart = true;
spoutConfig.socketTimeoutMs = 60 * 60 * 1000;
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); // 创建KafkaSpout
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig); TopologyBuilder builder = new TopologyBuilder();
// Storm再次从Kafka消费数据
builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3);
// Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数)
builder.setBolt(Common.PROCESS_BOLT, new ProcessBolt(), 3).shuffleGrouping(Common.KAFKA_SPOUT);
// Storm将数据写入到Hbase
builder.setBolt(Common.HBASE_BOLT, new HbaseBolt(), 3).shuffleGrouping(Common.PROCESS_BOLT); Properties props = new Properties();
props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST);
props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS);
props.put("serializer.class", Common.STORM_SERILIZER_CLASS); Config conf = new Config();
conf.put("kafka.broker.properties", props); conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers); if (args == null || args.length == 0) {
// 本地方式运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology());
} else {
// 集群方式运行
conf.setNumWorkers(3);
try {
StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException e) {
System.out.println("error : " + e);
}
} }
} class ProcessBolt extends BaseBasicBolt { private static final long serialVersionUID = 1L; @Override
public void execute(Tuple input, BasicOutputCollector collector) {
String logStr = input.getString(0);
if (logStr != null) {
String infos[] = logStr.split("\\t");
//180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy
collector.emit(new Values(infos[2], infos[6]));
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("date", "user_action"));
}
} class HbaseBolt implements IBasicBolt {
private static final long serialVersionUID = 1L; HBaseDAO hBaseDAO = null; SimpleDateFormat simpleDateFormat = null;
SimpleDateFormat simpleDateFormatHHMMSS = null; int userBuyCount = 0;
int userShoopingCarCount = 0; //这里要考虑避免频繁写入数据到hbase
int writeToHbaseMaxNum = Common.WRITE_RECORD_TO_TABLE_PER_SECOND * 1000;
long begin = System.currentTimeMillis();
long end = 0; @SuppressWarnings("rawtypes")
@Override
public void prepare(Map map, TopologyContext context) {
hBaseDAO = new HBaseDAOImpl();
simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMMHHMMSS);
simpleDateFormatHHMMSS = new SimpleDateFormat(Common.DATE_FORMAT_HHMMSS);
hBaseDAO.createTable(Common.TABLE_USER_ACTION, new String[]{Common.COLUMN_FAMILY}, Common.TABLE_MAX_VERSION);
} @Override
public void execute(Tuple input, BasicOutputCollector collector) {
// 如果时间是第二天的凌晨1s
// 需要对count做清零处理
//不过这里的判断不是很准确,因为在此时,可能前一天的数据还没有处理完
if (simpleDateFormatHHMMSS.format(new Date()).equals(Common.DATE_FORMAT_HHMMSS_DEFAULT_VALUE)) {
userBuyCount = 0;
userShoopingCarCount = 0;
} if (input != null) {
// base one ProcessBolt.declareOutputFields()
String date = input.getString(0);
String userAction = input.getString(1); if (userAction.equals(Common.KEY_WORD_BUY)) {
//同一个user在一天之内可以重复'Buy'动作
userBuyCount++;
} if (userAction.equals(Common.KEY_WORD_SHOPPING_CAR)) {
userShoopingCarCount++;
} end = System.currentTimeMillis();
if ((end - begin) > writeToHbaseMaxNum) {
System.out.println("hbase_key: " + Common.KEY_WORD_BUY + "_" + date + " , userBuyCount: " + userBuyCount + ", userShoopingCarCount :" + userShoopingCarCount); //往hbase中写入数据
String quailifer = simpleDateFormat.format(new Date());
hBaseDAO.insert(Common.TABLE_USER_ACTION ,
Common.KEY_WORD_BUY + "_" + date,
Common.COLUMN_FAMILY,
new String[] { quailifer },
new String[] { "{user_buy_count:" + userBuyCount + "}" }
);
hBaseDAO.insert(Common.TABLE_USER_ACTION ,
Common.KEY_WORD_SHOPPING_CAR + "_" + date,
Common.COLUMN_FAMILY,
new String[] { quailifer },
new String[] { "{user_shopping_car_count:" + userShoopingCarCount + "}" }
);
begin = System.currentTimeMillis();
}
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} @Override
public void cleanup() { }
} interface HBaseDAO {
public void createTable(String tableName, String[] columnFamilys, int maxVersion);
public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]);
} class HBaseDAOImpl implements HBaseDAO { HConnection hConnection = null;
static Configuration conf = null; public HBaseDAOImpl() {
conf = new Configuration();
conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST);
try {
hConnection = HConnectionManager.createConnection(conf);
} catch (IOException e) {
e.printStackTrace();
}
} public void createTable(String tableName, String[] columnFamilys, int maxVersion) {
try {
HBaseAdmin admin = new HBaseAdmin(conf);
if (admin.tableExists(tableName)) {
System.err.println("table existing in hbase.");
} else {
HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName));
for (String columnFamily : columnFamilys) {
HColumnDescriptor hColumnDescriptor = new HColumnDescriptor(columnFamily);
hColumnDescriptor.setMaxVersions(maxVersion);
tableDesc.addFamily(hColumnDescriptor);
} admin.createTable(tableDesc);
System.err.println("table is created.");
}
admin.close();
} catch (Exception e) {
e.printStackTrace();
}
} @Override
public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]) {
HTableInterface table = null;
try {
table = hConnection.getTable(tableName);
Put put = new Put(rowKey.getBytes());
for (int i = 0; i < quailifer.length; i++) {
String col = quailifer[i];
String val = value[i];
put.add(family.getBytes(), col.getBytes(), val.getBytes());
}
table.put(put);
System.err.println("save record successfuly.");
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
table.close();
} catch (IOException e) {
e.printStackTrace();
}
}
} }
Storm处理逻辑:
1.每秒向Hbase写入数据
2.明天凌晨会重置数据
如果,我们一直运行上面的程序,那么,系统就会一直往Hbase里面写入数据,那么这样,我们就可以采集到我们生成报表的数据了。
那么下面就是报表实现
6.11.读取Hbase数据通过POI生成Excel Report
- 读取Hbase数据
- 通过POI生成Excel报表
package com.b510.big.data.poi; import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HConnection;
import org.apache.hadoop.hbase.client.HConnectionManager;
import org.apache.hadoop.hbase.client.HTableInterface;
import org.apache.hadoop.hbase.client.Result;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook; public class ReportUtil { public static void main(String[] args) throws Exception { String year = "2018";
String month = "12";
String day = "21";
String hour = "14"; generateReport(year, month, day, hour);
} private static void generateReport(String year, String month, String day, String hour) {
HBaseDAO hBaseDAO = new HBaseDAOImpl();
// format: yyyyMMddHH
String begin = year + month + day + hour;
String[] split = generateQuailifers(begin); List<Integer> userBuyCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_BUY);
List<Integer> userShoppingCarCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_SHOPPING_CAR); //System.err.println(userBuyCountList.size());
//System.err.println(userShoppingCarCountList.size()); writeExcel(year, month, day, hour, userBuyCountList, userShoppingCarCountList);
} private static void writeExcel(String year, String month, String day, String hour, List<Integer> userBuyCountList, List<Integer> userShoppingCarCountList) {
try {
File file = new File(Common.REPORT_TEMPLATE);
InputStream in = new FileInputStream(file);
XSSFWorkbook wb = new XSSFWorkbook(in);
XSSFSheet sheet = wb.getSheetAt(0);
if (sheet != null) {
XSSFCell cell = null; cell = sheet.getRow(0).getCell(0);
cell.setCellValue("One Hour Report-" + year + "-" + month + "-" + day + " From " + hour + ":00 To " + hour + ":59"); putData(userBuyCountList, sheet, 3);
putData(userShoppingCarCountList, sheet, 7); FileOutputStream out = new FileOutputStream(Common.REPORT_ONE_HOUR);
wb.write(out);
out.close();
System.err.println("done.");
}
} catch (Exception e) {
System.err.println("Exception" + e);
}
} private static void putData(List<Integer> userBuyCountList, XSSFSheet sheet, int rowNum) {
XSSFCell cell;
if (userBuyCountList != null && userBuyCountList.size() > 0) {
for (int i = 0; i < userBuyCountList.size(); i++) {
cell = sheet.getRow(rowNum).getCell(i + 1);
cell.setCellValue(userBuyCountList.get(i));
}
}
} private static List<Integer> getData(HBaseDAO hBaseDAO, String year, String month, String day, String[] split, String preKey) {
List<Integer> list = new ArrayList<Integer>();
Result rs = hBaseDAO.getOneRowAndMultiColumn(Common.TABLE_USER_ACTION, preKey + "_" + year + "-" + month + "-" + day, split);
for (Cell cell : rs.rawCells()) {
String value = new String(CellUtil.cloneValue(cell)).split(":")[1].trim();
value = value.substring(0, value.length() - 1);
list.add(Integer.valueOf(value));
}
return list;
} private static String[] generateQuailifers(String begin) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 60;) { if (i == 0 || i == 5) {
sb.append(begin).append("0").append(i).append("00").append(",");
} else {
sb.append(begin).append(i).append("00").append(",");
}
i = i + 5;
}
sb.append(begin).append("5959");
String sbStr = sb.toString();
String[] split = sbStr.split(",");
return split;
}
} interface HBaseDAO {
Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols);
} class HBaseDAOImpl implements HBaseDAO { HConnection hConnection = null;
static Configuration conf = null; public HBaseDAOImpl() {
conf = new Configuration();
conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST);
try {
hConnection = HConnectionManager.createConnection(conf);
} catch (IOException e) {
e.printStackTrace();
}
} @Override
public Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols) {
HTableInterface table = null;
Result rsResult = null;
try {
table = hConnection.getTable(tableName);
Get get = new Get(rowKey.getBytes());
for (int i = 0; i < cols.length; i++) {
get.addColumn(Common.COLUMN_FAMILY.getBytes(), cols[i].getBytes());
}
rsResult = table.get(get);
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
table.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return rsResult;
} } class Common { // report
public static final String REPORT_TEMPLATE = "./resources/report.xlsx";
public static final String REPORT_ONE_HOUR = "./resources/one_report.xlsx"; public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss"; public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888"; // key word
public static final String KEY_WORD_BUY = "Buy";
public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car"; // hbase
public static final String TABLE_USER_ACTION = "t_user_actions";
public static final String COLUMN_FAMILY = "cf"; }
7.源码下载
Source Code:Flume_Kafka_Storm_Hbase_Hdfs_Poi_src.zip
相应的Jar文件,由于so big,自己根据import *信息加入。
8.总结
学习Big Data一段时间了,通过自己的学习和摸索,实现自己想要的应用,还是很有成就感的哈....当然,踩地雷也是一种不错的体验...:)
========================================================
More reading,and english is important.
I'm Hongten
大哥哥大姐姐,觉得有用打赏点哦!你的支持是我最大的动力。谢谢。
Hongten博客排名在100名以内。粉丝过千。
Hongten出品,必是精品。
E | hongtenzone@foxmail.com B | http://www.cnblogs.com/hongten
========================================================