题解 \(by\;zj\varphi\)
用两个集合分别表示 \(1\) 边联通块,\(1,2\) 边联通块 。
\(\rm son_x\) 表示当前节点通过 \(3\) 类边能到的 \(2\) 联通块的数量,\(tw\) 表示当前节点 \(2\) 联通块的大小。
这些都可以预处理出来,最后在计算答案时不要忘了加上父亲的贡献。
最后因为并查集只有合并而没有拆开,所以复杂度为 \(\mathcal O\rm (nlogn)\)。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++;
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=3e5+7;
int first[N],w[N],f[N],tw[N],son[N],n,m,t=1;
struct edge{int v,nxt,w;}e[N<<1];
inline void add(int u,int v,int w) {
e[t].v=v,e[t].w=w,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].w=w,e[t].nxt=first[v],first[v]=t++;
}
struct UDS{
int fa[N];
UDS(){for (ri i(1);i<=N-7;p(i)) fa[i]=i;}
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
}O,T;
void dfs(int x,int fa) {
tw[x]=1;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if ((v=e[i].v)==fa) continue;
f[v]=x,w[v]=e[i].w;
dfs(v,x);
if (w[v]==1) {
O.fa[v]=x;
son[x]+=son[v];
}
if (w[v]!=3) {
T.fa[v]=x;
tw[x]+=tw[v];
}
if (w[v]==3) son[x]+=tw[v];
}
}
inline void solve2(int u,int v) {
int k=O.find(u);
O.fa[v]=u;
son[k]+=son[v];
}
inline void solve3(int u,int v) {
int k=O.find(u);
son[k]-=tw[v];
u=T.find(u);
T.fa[v]=u;
tw[u]+=tw[v];
k=O.find(f[u]);
if (w[u]==3&&k) son[k]+=tw[v];
}
inline int check(int u,int v) {
return O.find(f[T.find(v)])==O.find(u)||T.find(f[O.find(u)])==T.find(v)
||T.find(u)==T.find(v);
}
inline int count(int x) {
int ans=tw[T.find(x)]+son[O.find(x)];
x=O.find(x);
if (w[x]==3) ans+=tw[T.find(f[x])];
return ans;
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n),read(m);
for (ri i(1),u,v,nw;i<n;p(i)) read(u),read(v),read(nw),add(u,v,nw);
dfs(1,0);
for (ri i(1),u,v,a,b;i<=m;p(i)) {
read(u),read(v),read(a),read(b);
if (f[v]!=u) swap(u,v);
if (w[v]==2) solve2(u,v);
else if (w[v]==3) solve3(u,v);
--w[v];
print(check(a,b),' '),print(count(a),'\n');
}
return 0;
}
}
int main() {return nanfeng::main();}