windows 本地构建hadoop-spark运行环境(hadoop-2.6, spark2.0)

  1. 下载hadoop
    1. http://hadoop.apache.org/releases.html --> http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz
    2. 安装hadoop,配置HADOOP_HOME, 把${HADOOP_HOME}/bin放到path
  2. 下载spark
    1. http://spark.apache.org/downloads.html --> https://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.6.tgz 注意与hadoop版本匹配
    2. 安装,配置SPARK_HOME,把${SPARK_HOME}/bin放到path
  3. 在运行spark程序时,会报找不到 winutils.exe
    1. 下载 https://github.com/srccodes/hadoop-common-2.2.0-bin.git 放到${HADOOP_HOME}/bin下
  4. 运行时设置本地运行即可
  5. spark样例:
 
LocalSparkContext.scala
 
  1. import org.apache.spark.{SparkConf, SparkContext}
  2. import org.scalatest._
  3. trait LocalSparkContext extends BeforeAndAfterAll {
  4. self: Suite =>
  5. @transient var sc: SparkContext = _
  6. override def beforeAll() {
  7. val conf = new SparkConf()
  8. .setMaster("local[2]")
  9. .setAppName("test")
  10. sc = new SparkContext(conf)
  11. }
  12. override def afterAll() {
  13. if (sc != null) {
  14. sc.stop()
  15. }
  16. }
  17. }
 
SparkWCSuit.scala
  1. import org.apache.spark.rdd.RDD
  2. import org.apache.spark.sql.{Row, SQLContext}
  3. import org.apache.spark.util.LongAccumulator
  4. import org.scalatest.FunSuite
  5. import tool.LocalSparkContext
  6. import algos.{MergedPCtr, PCtrUtils}
  7. class SparkWCSuit extends FunSuite with LocalSparkContext {
  8. //rdd wordCount
  9. test("test rdd wc") {
  10. sc.setLogLevel("ERROR")
  11. val rdd = sc.makeRDD(Seq("a", "b", "b"))
  12. val res = rdd.map((_, 1)).reduceByKey(_ + _).collect().sorted
  13. assert(res === Array(("a", 1), ("b", 2)))
  14. }
  15. }
 
build.sbt
  1. name := "doc_rank"
  2. version := "1.0"
  3. scalaVersion := "2.10.5"
  4. libraryDependencies += "org.apache.spark" % "spark-core_2.10" % "2.0.2"
  5. libraryDependencies += "org.apache.spark" % "spark-mllib_2.10" % "2.0.2"
  6. libraryDependencies += "commons-cli" % "commons-cli" % "1.2"
  7. libraryDependencies ++= Seq(
  8. "org.scalanlp" %% "breeze" % "0.11.2",
  9. "org.scalanlp" %% "breeze-natives" % "0.11.2",
  10. "org.scalanlp" %% "breeze-viz" % "0.11.2"
  11. )
  12. libraryDependencies ++= Seq(
  13. "org.apache.hadoop" % "hadoop-core" % "2.6.0-mr1-cdh5.4.4",
  14. "org.apache.hbase" % "hbase-client" % "1.0.0-cdh5.4.4",
  15. "org.apache.hbase" % "hbase-common" % "1.0.0-cdh5.4.4",
  16. "org.apache.hbase" % "hbase-server" % "1.0.0-cdh5.4.4",
  17. "org.apache.hbase" % "hbase-protocol" % "1.0.0-cdh5.4.4"
  18. )
  19. resolvers += "Akka Repository" at "http://repo.akka.io/releases/";
  20. resolvers += "cloudera-repo-releases" at "https://repository.cloudera.com/artifactory/repo/";
  21. resolvers ++= Seq(
  22. "Sonatype Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots/";,
  23. "Sonatype Releases" at "https://oss.sonatype.org/content/repositories/releases/";
  24. )
 
 
 
  1. hadoop样例
        
目录结构:
src/
├── main
│   ├── java
│   │   ├── io
│   │   │   └── longwind
│   │   │       └── mapreduce
│   │   │           ├── main
│   │   │           │   └── Main.java
│   │   │           ├── mapreduce
│   │   │           │   └── InfoidUniquer.java
│   │   │           └── utils
│   │   │               ├── Constant.java
│   │   │               └── HadoopUtils.java
│   │   └── org
│   │       └── apache
│   │           └── hadoop
│   │               ├── io
│   │               │   └── nativeio
│   │               │       └── NativeIO.java
│   │               └── mapred
│   │                   ├── ClientCache.java
│   │                   ├── ClientServiceDelegate.java
│   │                   ├── NotRunningJob.java
│   │                   ├── ResourceMgrDelegate.java
│   │                   ├── YarnClientProtocolProvider.java
│   │                   └── YARNRunner.java
│   └── resources
│       └── log4j.properties
└── test
    ├── java
    │   └── test
    └── resources
        └── log4j.properties
 
pom.xml中关键依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0-cdh5.4.4</version>
</dependency>
 
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.0-cdh5.4.4</version>
</dependency>
 
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.6.0-cdh5.4.4</version>
</dependency>
 
代码方面:
上面目录结构显示的org.apache.hadoop.* 那些是从hadoop源码包里拷出来的,注意是2.6.0-cdh5.4.4版本的
程序运行起来报错access0,如果是NativeIO.java 那应该是权限问题,需要手动修改NativeIO.java 中的
 
public static boolean access(String path, AccessRight desiredAccess)throws IOException {
    return true;//修改后
    //return access0(path, desiredAccess.accessRight());//修改前
}

这样,就能在windows本地,轻松进行hadoop, spark开发调试了,顺便吐槽一下mrunit不是很给力,问题一般是版本,包冲突,权限。
 
参考:
  1. 平野大荒 http://www.cnblogs.com/tq03/p/5101916.html --windows上的mapreduce运行环境
  2. 在前进的路上 http://blog.csdn.net/congcong68/article/details/42043093 -- access0 问题解决
  3. xuweimdm http://blog.csdn.net/u011513853/article/details/52865076 -- spark在windows上
 
上一篇:IE调试网页之三:使用 F12 工具控制台查看错误和状态 (Windows)


下一篇:AOE网上的关键路径(最长路径 + 打印路径)