The twenty-first century is a biology-technology developing century. We know that a gene is made of DNA. The nucleotide bases from which DNA is built are A(adenine), C(cytosine), G(guanine), and T(thymine). Finding the longest common subsequence between DNA/Protein sequences is one of the basic problems in modern computational molecular biology. But this problem is a little different. Given several DNA sequences, you are asked to make a shortest sequence from them so that each of the given sequence is the subsequence of it.
For example, given "ACGT","ATGC","CGTT" and "CAGT", you can make a sequence in the following way. It is the shortest but may be not the only one.
InputThe first line is the test case number t. Then t test cases follow. In each case, the first line is an integer n ( 1<=n<=8 ) represents number of the DNA sequences. The following k lines contain the k sequences, one per line. Assuming that the length of any sequence is between 1 and 5.OutputFor each test case, print a line containing the length of the shortest sequence that can be made from these sequences.Sample Input
1
4
ACGT
ATGC
CGTT
CAGT
Sample Output
8 思路
如果DNA最长的串长度为n,那就先搜索以n为长度,是否存在符合条件的母串,若不存在,再搜索n+1;
这便是所谓的迭代加深搜索。结束。
代码中用到的maxx,只是一个剪枝而已。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = 1e9+;
const double eps = 1e-; char s[][];
int maxs=;
int tot[];
int n,pos[];
char a[]="ACGT"; void view()
{
for(int i=;i<=n;i++){
cout<<pos[i]<<" ";
}
cout<<endl;
} bool dfs(int t)
{ int maxx=;
for(int i=;i<=n;i++){
maxx=max(maxx,tot[i]-pos[i]);
}
if(maxx==){return true;}
if(t+maxx>maxs){return false;}
bool vis[];
for(int i=;i<;i++){
memset(vis,,sizeof(vis));
for(int j=;j<=n;j++){
if(s[j][pos[j]]==a[i]){
pos[j]++;
vis[j]=true;
}
}
if(dfs(t+)){return true;}
for(int j=;j<=n;j++){
if(vis[j]){
pos[j]--;
}
}
}
return false;
} int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
maxs=;
for(int i=;i<=n;i++){
scanf("%s",s[i]);
tot[i]=strlen(s[i]);
maxs=max(maxs,tot[i]);
} while(true){
memset(pos,,sizeof(pos));
if(dfs()){
printf("%d\n",maxs);
break;
}
else maxs++;
}
}
return ;
}