如何获取特定宽度和高度的网络摄像头视频?
我对OpenCV库没有经验,所以我需要这方面的帮助.此代码来自geeksforgeeks.com.这是我现在唯一拥有的东西.
我想要实现的是,我想仅在视频输入的指定区域中检测运动.
import cv2, time, pandas
from datetime import datetime
static_back = None
motion_list = [ None, None ]
time = []
df = pandas.DataFrame(columns = ["Start", "End"])
video = cv2.VideoCapture(0)
while True:
check, frame = video.read()
motion = 0
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if static_back is None:
static_back = gray
continue
diff_frame = cv2.absdiff(static_back, gray)
thresh_frame = cv2.threshold(diff_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2)
(cnts, _) = cv2.findContours(thresh_frame.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 50000:
continue
motion = 1
(x, y, w, h) = cv2.boundingRect(contour)
# making green rectangle arround the moving object
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
motion_list.append(motion)
motion_list = motion_list[-2:]
if motion_list[-1] == 1 and motion_list[-2] == 0:
time.append(datetime.now())
if motion_list[-1] == 0 and motion_list[-2] == 1:
time.append(datetime.now())
cv2.imshow("Gray Frame", gray)
cv2.imshow("Difference Frame", diff_frame)
cv2.imshow("Threshold Frame", thresh_frame)
cv2.imshow("Color Frame", frame)
key = cv2.waitKey(1)
if key == ord('q'):
# if something is movingthen it append the end time of movement
if motion == 1:
time.append(datetime.now())
break
for i in range(0, len(time), 2):
df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True)
df.to_csv("Time_of_movements.csv")
video.release()
cv2.destroyAllWindows()
解决方法:
您似乎想要获得每个帧的特定区域的感兴趣区域(ROI).要在OpenCV中执行此操作,我们可以使用边界框坐标裁剪图像.将(0,0)视为图像的左上角,从左到右作为x方向,从上到下作为y方向.如果我们将(x1,y1)作为左上顶点并且(x2,y2)作为ROI的右下顶点,我们可以通过以下方式裁剪图像:
ROI = frame[y1:y2, x1:x2]
作为说明:
-------------------------------------------
| |
| (x1, y1) |
| ------------------------ |
| | | |
| | | |
| | ROI | |
| | | |
| | | |
| | | |
| ------------------------ |
| (x2, y2) |
| |
| |
| |
-------------------------------------------
我们能够这样做,因为图像在OpenCV中存储为Numpy数组. Here是Numpy数组索引和切片的绝佳资源.获得所需的ROI后,您就可以在此区域进行运动检测.