Description
给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小。
Input
第一行两个整数n,m,如题目所述
接下来m行,每行两个整数x,y描述一条边
接下来一个整数Q,如题目所述
接下来Q行,每行三个整数x,y,z,如题目描述
Output
Q行,每行一个正整数,如题目描述
Sample Input
5 6
2 3
4 5
1 2
1 3
1 4
1 5
6
2 4 3
2 4 4
2 4 5
1 3 3
1 3 4
1 3 5
Sample Output
1
2
3
1
5
5
HINT
n,m,q≤10^5
Sol
考虑单组询问的做法,显然可以二分答案,然后用并查集把所有小于等于的边合并,判断是否可行即可。
这里每组询问互相独立,我们上整体二分即可。
如果把整体二分写成BFS形式的话不用还原并查集啦,而且好写得多,具体地,我们建出类似线段树的东西,然后求出每个线段的mid,按照顺序并查集合并,如果当前i和这一层其中一个mid相等就判断这个节点vector中的元素是否达标并下传即可。
每一层要清空并查集。
Code
#include <bits/stdc++.h>
using namespace std;
struct que{int x,y,z;}q[100005];vector<int>v[800050];
int n,m,Q,x,y,now=1,U[100005],V[100005],cnt[100005],ans[100005],mid[800050],l[800050],r[800050],f[100005],sz[100005];
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
void bud(int x,int L,int R){l[x]=L;r[x]=R;mid[x]=(L+R)>>1;if(L==R) return;bud(x*2,L,mid[x]);bud(x*2+1,mid[x]+1,R);}
int main()
{
scanf("%d%d",&n,&m);memset(ans,0x3f,sizeof(ans));
for(int i=1;i<=m;i++) scanf("%d%d",&x,&y),U[i]=x,V[i]=y;
scanf("%d",&Q);bud(1,1,m);
for(int i=1;i<=Q;i++) scanf("%d%d%d",&q[i].x,&q[i].y,&q[i].z),v[1].push_back(i);
for(int gg=m*4;gg;gg>>=1)
{
for(int i=1;i<=n;i++) f[i]=i,sz[i]=1,cnt[i]=0;
for(int i=1;i<=m;i++)
{
if((x=find(V[i]))!=(y=find(U[i]))) f[y]=f[x],sz[x]+=sz[y];
if(i==mid[now]) for(int j=0;j<v[now].size();j++)
{
int a=find(q[v[now][j]].x),b=find(q[v[now][j]].y);
cnt[v[now][j]]=(a==b)?sz[a]:sz[a]+sz[b];
if(cnt[v[now][j]]<q[v[now][j]].z) v[now*2+1].push_back(v[now][j]);
else v[now*2].push_back(v[now][j]),ans[v[now][j]]=mid[now];
}
if(i==mid[now]||!mid[now]) now++;
}
}
for(int i=1;i<=Q;i++) printf("%d\n",ans[i]);
}