C. Fadi and LCM

Today, Osama gave Fadi an integer XX, and Fadi was wondering about the minimum possible value of max(a,b)max(a,b) such that LCM(a,b)LCM(a,b) equals XX. Both aa and bb should be positive integers.

LCM(a,b)LCM(a,b) is the smallest positive integer that is divisible by both aa and bb. For example, LCM(6,8)=24LCM(6,8)=24, LCM(4,12)=12LCM(4,12)=12, LCM(2,3)=6LCM(2,3)=6.

Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?

Input

The first and only line contains an integer XX (1≤X≤10121≤X≤1012).

Output

Print two positive integers, aa and bb, such that the value of max(a,b)max(a,b) is minimum possible and LCM(a,b)LCM(a,b) equals XX. If there are several possible such pairs, you can print any.

Examples input Copy
2
output Copy
1 2
input Copy
6
output Copy
2 3
input Copy
4
output Copy
1 4
input Copy
1
output Copy
1 1

 刚开始想多了,直接模拟不就完了。。。

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <iomanip>
#include <deque>
#include <bitset>
#define ll              long long
#define PII             pair<int, int>
#define rep(i,a,b)      for(int  i=a;i<=b;i++)
#define dec(i,a,b)      for(int  i=a;i>=b;i--)
#define pb              push_back
#define mk              make_pair
using namespace std;
int dir[4][2] = { { 0,1 } ,{ 0,-1 },{ 1,0 },{ -1,0 } };
const long long INF = 0x7f7f7f7f7f7f7f7f;
const int inf = 0x3f3f3f3f;
const double pi = 3.14159265358979323846;
const int mod = 998244353;
const int N = 2e5 + 5;
//if(x<0 || x>=r || y<0 || y>=c)

inline ll read()
{
    ll x = 0; bool f = true; char c = getchar();
    while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
    while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
    return f ? x : -x;
}

ll gcd(ll m, ll n)
{
    return n == 0 ? m : gcd(n, m % n);
}
ll lcm(ll m, ll n)
{
    return m * n / gcd(m, n);
}

int main()
{
    ll x;
    cin >> x;
    for (ll i = sqrt(x); i >= 1; i--)
    {
        if (x % i==0 && lcm(i,x/i)==x)
        {
            cout << i <<" "<< x / i << endl;
            break;
        }
    }
    return 0;
}

 

 

上一篇:Codeforces Round #641 (Div. 2)-C. Orac and LCM(数论,gcd,lcm)


下一篇:1108 最小公倍数