xloader

[1],先看一下整个系统的结构(软件是灵魂,硬件是驱体,再强大的灵魂力若没有躯体终将是游魂野鬼,再强壮的驱体若没有灵魂终将是植物人)

结构 作用 备注
硬件 一切软件的载体  
xloader                   引导uboot                                   
uboot 启动加载或下载linux kernel  
linux kernel OS,承载android  
android OS,承载APP  

[2],为什么需要xloader?

cpu上电后会自动加载一小段程序到内部ram中运行,内部的ram资源很小,一般只有几十k的空间,比如我现在用的cpu就只有32k的空间。uboot功能很强,具有初始化,交互操作,下载和引导linux的作用,因此体积上会超过cpu内部的ram大小,所以我们需要更小的xloader来为我们加载引导uboot。xloader一般只作一些最最核心的硬件初始化,比如cpu时钟,外部内存,flash和usb/SD/uart的初始化工作,然后就加载uboot,把更深入的初始就交给uboot来执行。

[3],xloader执行流程

[首先],看x-loader.lds文件,通过以下命令得到lds文件的路径

 $ find -name "*.lds"

打开x-loader.lds如下:

 /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//指定输出可执行文件是elf格式,32位ARM指令,小端
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
//指定输出可执行文件的平台为ARM
OUTPUT_ARCH(arm)
//指定输出可执行文件的起始代码段为_start
ENTRY(_start)
SECTIONS
{
//从0x0位置开始,但会在vim board/copener_pad_ref/config.mk 文件里面定义为TEXT_BASE = 0x07041000
. = 0x00000000; //代码以4字节对齐
. = ALIGN();
//指定代码段
.text :
{
cpu/copener/start.o (.text) //代码的第一个代码部分
*(.text) //其它代码部分
} . = ALIGN(); //指定只读数据段
.rodata : { *(.rodata) } . = ALIGN(); //指定可读写数据段
.data : { *(.data) } . = ALIGN(); //指定got段, got段式是uboot自定义的一个段, 非标准段
.got : { *(.got) } . = ALIGN(); //把__bss_start赋值为当前位置,即bss段的开始位置
__bss_start = .; //指定bss段
.bss : { *(.bss) } //把_end赋值为当前位置,即bss段的结束位置
_end = .;
}

  由上面可知程序的入口为“cpu/copener/start.S”文件,且入口函数为“_start”,开头已经有了,接下来就是怎么跟踪代码了。

  [然后],跟踪start.S文件:

  start.S是汇编写的文件,主要是执行了下面的操作  

 // set the cpu to SVC32 mode
// disable MMU
// Enable all domains to client mode
// Invalidate instruction cache
// Invalidate data cache
// Invalidate entire Unified main TLB ldr pc, _start_armboot /* jump to C code */
_start_armboot: .word start_armboot

  start.S的最后通过“ldr pc, _start_armboot”跳入C代码中运行了。通过下面的命令把start_armboot函数所在文件lib/board.c找出。  

 $ grep -rnws start_armboot 

  打开board.c,该函数简化后的操作如下

 void start_armboot (void)
{
board_init(); //pad_ref.c 空函数
uart_init(CFG_UART_BAUD_RATE); //uart.c 初始化串口
cpu_init(); //cpu.c 设置一下cpu的频率
ddr_init(); //ddr_init.c 初始化ddr
mem_test(); //board.c 内存测试 for(idx = ;idx < ;) {
sram_dat = readl(SRAM_BASE_ADDR + idx);
writel(sram_dat,DDR_DATA_BASE + idx);
idx = idx + ;
} if (check_romloader_fastboot()) { //检测引导设置,若符合usb引导则fastboot USB
TRACE(KERN_INFO, "enter fastboot USB boot\n");
usb_boot(0x02); //进入USB引导操作
} switch(readl(CFG_BOOT_MODE) & 0x3){ //检测其它引导模式进入相应操作
case 0x00:
TRACE(KERN_INFO,"SDIO\n");
sdmmc_continue_boot(0x0); case 0x02:
TRACE(KERN_INFO,"USB\n");
usb_boot(0x02);
break; case 0x03:
TRACE(KERN_UART,"UART\n");
uart_boot(0x03);
break;
default:
TRACE(KERN_ERROR,"No Boot Source\n");
break;
}
TRACE(KERN_ERROR,"No U-boot found\n");
while();
}

  而后面的usb_boot(0x02)又会调用handle_fastboot(rxdata, rxsize, boot_mode),进而调用enter_entry(head.entry, boot_mode),最后调用(*(void(*)())buf)(boot_mode),然后就跳进uboot里面去运行了。

  (*(void(*)())buf)(boot_mode)是一个函数指针,类型为void(*)(),指向的是buf地址,即head.entry,涉及到的结构体如下:  

 typedef struct {
char tag[]; //NUFX
unsigned int offset; //
unsigned int entry; //where to place
unsigned int size; //size of binary
unsigned int loader_cksum; //chsum of binary
unsigned int header_cksum; //cksum of first 16 bytes of header
}xl_header;
extern xl_header head;

  由config.mk文件指定TEXT_BASE = 0x07041000,然后通过偏移算出Head.entry = 0x7041008。即xloader最后要跳转的地址为0x7041008。

[4]xloader的编译  

 //清除上一次编译
$ make distclean //配置当前编译
$ make copener_pad_ref_config //编译
$ make //////////////////////////////////////生成文件时打印的信息//////////////////////////////////////
Generate x-load.img from x-load
ELF Entry = 0x7041008
ELF Program number =
ELF Program Header Offset =
Program[]: offset=0x200, Size=0x74f8
Program[]: offset=0x61656100, Size=0x412d3705
Head.tag = NUFX
Head.offset = 0x200
Head.entry = 0x7041008
Head.size = 0x74fc
Head.loader_cksum = 0x55157080
Head.header_cksum = 0xb4604cd2

  生成的文件为:  

 oee@copener:/opt/ns115_jb/bsp/xloader$ ls -lh
-rwxrwxr-x oee oee 30K 5月 : x-load.bin
-rw-rw-r-- oee oee 30K 5月 : x-load.img

  

上一篇:java中利用RandomAccessFile读取超大文件


下一篇:Kafka设计解析(二十二)Flink + Kafka 0.11端到端精确一次处理语义的实现