拯救公主 (Ver. I)

题解

  1. 迷宫问题既可以用DFS也可以用BFS。DFS的优点在于方便得到起点到终点的准确路径,而BFS优点则是较为简单,且得到的路径长度是起点到终点的最短路径。
...xxxx
.x.x...
.x.x.x.
.x...x.
.xxxxx.
.......
比如这个迷宫用DFS得到的就不是最短路径,而BFS在每增加一步时会包含该步所有可能的通路,所以最先到终点的就一定最短路径。

题目

问题 E: 拯救公主 (Ver. I)

时间限制: 1 Sec  内存限制: 128 MB
提交: 112  解决: 30
[提交][状态][讨论版]
题目描述

公主被BEelzebub feng5166绑架,我们的英雄Ignatius必须拯救我们漂亮的公主。现在他进入了feng5166的城堡。城堡是一个大型的迷宫。为了简单地解决这个问题,我们假设迷宫是一个N * M的二维数组,左上角是(0,0),右下角是(N-1,M-1)。Ignatius进入(0,0),feng5166房间的门是(N-1,M-1),这是我们的目标。这是一些规则:

1.Ignatius只能向四个方向(上,下,左,右)移动,一步一秒。步骤定义如下:如果当前位置为(x,y),则在步骤之后,Ignatius只能站在(x-1,y),(x + 1,y),(x,y-1)或(X,Y + 1)。
2.数组标有一些字符和数字,定义如下
.:Ignatius可以走路的地方。
X:这个地方是一个陷阱,Ignatius不能走在上面。

你的任务是给出Ignatius达到目标位置所需的最小秒数。您可以假设起始位置和目标位置永远不会成为陷阱。

输入

测试数据有多组
每个测试样例以包含两个数字N和M(2 <= N <= 100,2 <= M <= 100)的行开始,这表示迷宫的大小。
然后是N * M二维矩阵,描述整个迷宫。 
输入格式见样例输入

输出

对于每个测试样例
你应该输出“God please help our poor hero.”。 如果Ignatius无法到达目标位置,或者你应该输出“It takes n seconds to reach the target position.”(n是最小秒数)

样例输入

5 6
.XX...
..X...
....X.
...XX.
XXXXX.
5 6
.XX...
..X...
.XX.X.
....X.
XXXXX.
5 6
.XX...
..XX..
....X.
...XX.
XXXXX.

样例输出

It takes 11 seconds to reach the target position.
It takes 13 seconds to reach the target position.
God please help our poor hero.

代码块(DFS)

这个代码,

#include <iostream>
#include <stack>
using namespace std;

class Box
{
    int x;
    int y;
    int di;//di代表下一步的方向,0向右,1向下,2向左,3向上
public:
    Box();
    friend class Maze;
};

class Maze
{
private:
    int n, m;
    int **maze;
    int directx[4], directy[4];//分别对应在不同di下,走到下一格x和y需要变化的值。
public:
    int num;//记录深度,即总路程
    Maze(int n1, int m1);
    ~Maze();
    int FindPath();
};

Maze::Maze(int n1, int m1)
{
    n = n1+2;//将迷宫用一层值为1的墙包起来
    m = m1+2;
    maze = new int*[n];
    for(int i=0; i<n; i++)
    {
        maze[i] = new int[m];
        for(int j=0; j<m; j++)
        {
            char ch;
            if(0<i && i<n-1 && 0<j && j<m-1)
            {
                cin>>ch;
                if(ch=='.')
                    maze[i][j] = 0;
                else
                    maze[i][j] = 1;
            }
            else
                maze[i][j] = 1;
        }
    }
    num = 1;
    directx[0] = 0, directx[1] = 1, directx[2] = 0, directx[3] = -1;
    directy[0] = 1, directy[1] = 0, directy[2] = -1, directy[3] = 0;
}

Box::Box()
{
    x = 1;
    y = 1;
    di = -1;
}

Maze::~Maze()
{
    for(int i=0; i<n; i++)
        delete []maze[i];
    delete []maze;
}

int Maze::FindPath()
{
    Box temp;
    stack<Box> s;
    s.push(temp);
    maze[1][1] = -1;
    while(!s.empty())
    {
        temp = s.top();
        s.pop();
        num--;
        int x = temp.x;//将出栈的temp的各成员存起来,之后temp就能重新用
        int y = temp.y;
        int di = temp.di+1;
        while(di<4)
        {
            int line = x+directx[di];//定义新变量对x和y操作就不会改变其值,方便循环操作。
            int col = y+directy[di];
            if(!maze[line][col])
            {
                temp.x = x;
                temp.y = y;
                temp.di = di;
                s.push(temp);
                x = line;
                y = col;
                maze[x][y] = -1;
                num++;
                if(x==n-2 && y==m-2)
                    return 1;
                else
                    di = 0;
            }
            else
                di++;
        }
    }
    return 0;
}

int main(void)
{
    int n, m;
    while(cin>>n>>m)
    {
        Maze myMaze(n, m);
        if(myMaze.FindPath())
            cout<<"It takes "<<myMaze.num<<" seconds to reach the target position."<<endl;
        else
            cout<<"God please help our poor hero."<<endl;
    }
    return 0;
}

代码块(BFS)

#include <iostream>
#include <queue>
using namespace std;

class Box
{
    int x;
    int y;
    int di;
    int step;//用来记录该格位于广度遍历的第几层
public:
    Box();
    friend class Maze;
};

class Maze
{
private:
    int n, m;
    int **maze;
    int directx[4], directy[4];
public:
    Maze(int n1, int m1);
    ~Maze();
    int FindPath();
};

Box::Box()
{
    x = 1;
    y = 1;
    di = 0;
    step = 0;
}

Maze::Maze(int n1, int m1)
{
    n = n1+2;
    m = m1+2;
    maze = new int*[n];
    for(int i=0; i<n; i++)
    {
        maze[i] = new int[m];
        for(int j=0; j<m; j++)
        {
            char ch;
            if(0<i && i<n-1 && 0<j && j<m-1)
            {
                cin>>ch;
                if(ch=='.')
                    maze[i][j] = 0;
                else
                    maze[i][j] = 1;
            }
            else
                maze[i][j] = 1;
        }
    }
    directx[0] = 0, directx[1] = 1, directx[2] = 0, directx[3] = -1;
    directy[0] = 1, directy[1] = 0, directy[2] = -1, directy[3] = 0;
}

Maze::~Maze()
{
    for(int i=0; i<n; i++)
        delete []maze[i];
    delete []maze;
}

int Maze::FindPath()
{
    Box temp;
    queue<Box> q;
    q.push(temp);
    maze[1][1] = 1;
    while(!q.empty())
    {
        temp = q.front();
        q.pop();
        int line = temp.x;
        int col = temp.y;
        int di = temp.di;
        int step = temp.step;
        while(di<4)
        {
            int x = line+directx[di];
            int y = col+directy[di];
            if(!maze[x][y])
            {
                temp.x = x;
                temp.y = y;
                temp.di = 0;
                temp.step = step+1;
                q.push(temp);
                maze[x][y] = 1;
                if(x==n-2 && y==m-2)
                {//一旦有某一条到达了终点,则说明其是所有通路中最短的,将其step输出即可
                    cout<<"It takes "<<temp.step<<" seconds to reach the target position."<<endl;
                    return 1;
                }
            }
            di++;
        }
    }
    cout<<"God please help our poor hero."<<endl;
    return 0;
}

int main(void)
{
    int n, m;
    while(cin>>n>>m)
    {
        Maze myMaze(n, m);
        myMaze.FindPath();
    }
    return 0;
}
上一篇:Delphi 10.4.1 游戏开发引擎unDelphiX


下一篇:DirectX简介