poj 1815 Friendship (最小割+拆点+枚举)

题意:

就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通。

算法:

假设s和t直接相连输出no answer。

把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量)

v和v''各自是一个流进的点。一个流出的点。

依据求最小割的性质。权值小的边是可能被选择的(断开的)。

加入源点st=0和汇点en=2*n+1,源点与s连权值为inf的边。t''与汇点连权值为inf的边。

s与s'',t与t''连权值为inf的边,这样保证自己和自己是不会失去联系的。

假设i和j有边相连。则i''和j连权值为inf的边。j''与i连权值为inf的边。

这样建图后跑最大流,求得的流量即为点的个数。

然后编号从小到大枚举每一个点。尝试去掉这个点(即仅仅进不出)。又一次建图再跑最大流。

看最大流是否会减小。假设减小了,就是要去掉的点。记录下来最后输出就能够了。

PS:

建图也能够不加源点和汇点,直接没去掉的点,拆的两点直接连权值为1的边,有边相连的

两点连权值为INF的边。

最终理解了我写的Dinic模板一直是直接处理残余网络即e[i].val的。

还有把容量网络和流量分开写的Dinic。

#include<cstdio>
#include<iostream>
#include<cstring>
#define INF 0x3f3f3f3f
#define maxn 210
#define maxm 160000
using namespace std; struct node
{
int v,val,next;
}e[maxm<<1];
int head[maxn<<1],mp[maxn][maxn],cnt,st,en,s,t,n;
int d[maxn<<1],q[maxn<<1],mm[maxn],del[maxn]; void init()
{
memset(del,0,sizeof(del));
memset(mp,0,sizeof(mp));
st = 0;
en = 2*n+1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
scanf("%d",&mp[i][j]);
}
} void add(int x,int y,int z)
{
e[cnt].v = y;
e[cnt].val = z;
e[cnt].next = head[x];
head[x] = cnt++;
e[cnt].v = x;
e[cnt].val = 0;
e[cnt].next = head[y];
head[y] = cnt++;
} void build()
{
memset(head,-1,sizeof(head));
cnt = 0;
add(st,s,INF);
add(t+n,en,INF);
for(int i=1;i<=n;i++)
{
if(!del[i]) add(i,i+n,1);
for(int j=1;j<=n;j++)
{
if(mp[i][j])
add(i+n,j,INF);
}
}
add(s,s+n,INF);
add(t,t+n,INF);
}
bool bfs()
{
memset(d,-1,sizeof(d));
int f = 0,r = 0,u;
q[r++] = st;
d[st] = 0;
while(f<r)
{
u = q[f++];
for(int i=head[u];i!=-1;i=e[i].next)
{
int t = e[i].v;
if(e[i].val>0 && d[t]==-1)//>0
{
d[t] = d[u]+1;
q[r++] = t;
if(t==en) return true;
}
}
}
return false;
} int dfs(int x,int flow)
{
if(x==en) return flow;
int ret = 0,dd;
for(int i=head[x];ret<flow && i!=-1;i=e[i].next)
{
int t = e[i].v;
if(d[t] == d[x]+1 && e[i].val)
{
dd = dfs(t,min(flow,e[i].val));
e[i].val-=dd;
e[i^1].val+=dd;
flow-=dd;
ret+=dd;
}
}
if(!ret) d[x]=-1;
return ret;
}
int Dinic()
{
int tmp = 0,maxflow = 0;
while(bfs())
{
while(tmp=dfs(st,INF))
maxflow+=tmp;
}
return maxflow;
} void solve()
{
if(mp[s][t])
{
printf("NO ANSWER!\n");
return;
}
build();
int ans = Dinic();
printf("%d\n",ans);
if(!ans) return;
int tmp = ans,f = 0,now;
for(int i=1;i<=n;i++)
{
if(i==s || i==t) continue;
//if(!mp[s][i]) continue; //点i尽管与s不是直接连通。但可能间接连通,所以枚举时不能continue掉
del[i] = 1;
build();
now = Dinic();
if(now<tmp)
{
mm[f++] = i;
tmp = now;
}
else
del[i] = 0;
}
for(int i=0;i<f-1;i++)
printf("%d ",mm[i]);
printf("%d\n",mm[f-1]);
}
int main()
{
while(scanf("%d%d%d",&n,&s,&t)!=EOF)
{
init();
solve();
}
return 0;
} /* 9 1 9
1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 0
0 1 0 1 0 0 1 0 0
0 1 1 0 1 0 1 1 0
0 0 1 0 0 1 0 1 0
0 0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 */
上一篇:bzoj1054


下一篇:POJ1006: 中国剩余定理的完美演绎